Curriculum Undergraduate Programme

B. Tech. Chemical Engineering (2019 Batch onwards)

Department of Chemical Engineering

Dr. B. R. Ambedkar National Institute of Technology Jalandhar–144011, Punjab, India

Phone: 0181-2690301, 302 (Ext. 2401)

Fax: 0181-2690932

Website: www.nitj.ac.in

Basis Structure of Curriculum for B.Tech in Chemical Engineering

Sr. No.	Course category	Number of Courses	Number of Credits
1	Common Institute Core Courses	-	63
	(CIC)		
2	Programme Core -Theory and	32	93
	Laboratory (PC)		
3	Programme Electives (PE)	05	15
4	Open Electives (OE)	03	09
	Total Credits (I-VIII)	1	80

III Semester

Code	Course Title	L	Т	Р	Contact	С
					hours	
CHPC-201	Chemical Process Calculations	3	1	0	4	4
CHPC-203	Fluid Mechanics	3	1	0	4	4
CHPC-205	Chemical Technology-I	3	0	0	3	3
CHPC-207	Mechanical Operations	3	1	0	4	4
CHPC-209	Material Science for Chemical	3	0	0	3	3
	Engineers					
CHPC-221	Fluid Mechanics Lab	0	0	3	3	2
CHPC-223	Mechanical Operations Lab	0	0	3	3	2
Total		15 3 6 24 2				22
Total Credits		22 PC	0 PE	0 OE	0 CI	22

IV Semester

Code	Course Title	L	Т	Р	Contact hours	С
MACI-202*	Probability and Statistics	3	1	0	4	4
CHPC-202	Chemical Engineering	3	1	0	4	4
	Thermodynamics					
CHPC-204	Heat Transfer	3	1	0	4	4
CHPC-206	Chemical Technology-II	3	0	0	3	3
CHPC-208	Energy Technology	3	0	0	3	3
CHPC-210	Process Equipment Design	1	0	2	3	2
CHPC-222	Chemical Technology Lab	0	0	3	3	2
CHPC-224	Heat Transfer Lab	0	0	3	3	2
Total	16	3	8	27	24	
Total Credits		20 PC	0 PE	0 OE	4 CI	24

* Syllabus will be provided by respective department.

V Semester

Code	Course Title	L	Т	Р	Contact hours	С
HMCI-202*	Entrepreneurship Development	3	0	0	3	3
	Management					
CHPC-301	Mass Transfer- I	3	1	0	4	4
CHPC-303	Chemical Reaction Engineering - I	3	1	0	4	4
CHPC-305	Process Engineering and	3	1	0	4	4
	Economics					
CHPC-307	Environmental Engineering	3	0	0	3	3
CHPE-XXX	Departmental Elective-I	3	0	0	3	3
CHPC-321	Environmental Engineering Lab	0	0	2	2	1
CHPC-323	Energy Technology Lab	0	0	2	2	1
CHCI-301	Minor Project, Phase-I	0	0	2	2	0**
Total		18	3	6	27	23
Total Credits		17 PC	3 PE	0 OE	3 CI	23

* Syllabus will be provided by respective department. ** Minor Project will be allotted in 5th Semester and evaluation at the end of 6th Sem.

VI Semester

Code	Course Title	L	Т	Р	Contact hours	С
CHPC-302	Mass Transfer- II	3	1	0	4	4
CHPC-304	Chemical Reaction Engineering- II	3	1	0	4	4
CHPC-306	Process Dynamics and Control	3	1	0	4	4
CHPE-XXX	Departmental Elective-II	3	0	0	3	3
CHOE-XXX	Open Elective -I	3	0	0	3	3
CHPC-322	Mass Transfer Lab	0	0	3	3	2
CHPC-324	Reaction Engineering and Thermodynamics Lab	0	0	3	3	2
CHCI-302	Minor Project, Phase-II	0	0	2	2	2
Total		15	3	8	26	24
Total Credits		16 PC	3 PE	3 OE	2 CI	24

VII Semester

Code	Course Title	L	Т	Р	Contact hours	С
CHPC-401	Transport Phenomena	3	1	0	4	4
CHPC-403	Industrial Safety and Hazards Management	3	0	0	3	3
CHPC-405	Process Plant Design	1	0	2	3	2
CHPE-XXX	Department Elective- III	3	0	0	3	3
CHOE-XXX	Open Elective-II	3	0	0	3	3
CHPC-421	Process Control Lab	0	0	3	3	2
CHPC- 423	Chemical Engineering Computing Lab	0	0	3	3	2
CHCI-425	Summer Training	-	-	-	-	2
CHCI-427	Major Project (Phase –I)	0	0	4	4	0*
Total		13	1	12	26	21
Total Credits		13 PC	3 PE	3 OE	2 CI	21

* Major Project will be allotted in 7th Semester and evaluation at the end of 8th semester

VIII Semester

Code	Course Title	L	Т	Р	Contact hours	С
CHPC-402	Modeling and Simulation	3	0	0	3	3
CHPE-XXX	Department Elective-IV	3	0	0	3	3
CHPE-XXX	Department Elective-V	3	0	0	3	3
CHOE-XXX	Open Elective-III	3	0	0	3	3
CHPC-422	Modeling and Simulation Lab	0	0	3	3	2
CHCI-424	Industrial Lecture	-	-	-	-	1*
CHCI-426	Major Project (Phase –II)	0	0	8	8	4
Total		12	0	11	23	19
Total Credits		5 PC	6 PE	3 OE	5 CI	19

* Minimum 4 industrial lecture will be organized by Department in final year of study. Grades to be awarded based upon Quiz test on the same day of lecture

Total Credits (III -VIII)	93 PC	15 PE	9 OE	16 CI	133 Credits
Total Credits (I-VIII)			180		

Note: In laboratory minimum 8 experiments will be conducted.

Program core courses to be offered by Department of Chemical Engineering for Department of **Biotechnology:**

Code	Course Title	L	Т	P	Credit	Semester
CHPC-281	Fluid and Particle	3	0	0	3	III
	Mechanics					
CHPC-282	Heat and Mass Transfer	3	1	0	4	IV
CHPC-481	Instrumentation and	3	0	0	3	VII
	Process Control					
Total Credits	10					

DEPARTMENTAL ELECTIVES

Departmental Electives - I, II

Sr.	Code	Course Title	L	Т	Р	Credit
No.						
1.	CHPE-351	Computational Fluid Dynamics	3	0	0	3
2.	CHPE-352	Microbiology for Chemical Engineers	3	0	0	3
3.	CHPE-353	Biomass Conversion Processes	3	0	0	3
4.	CHPE-354	Nano Science and Technology	3	0	0	3
5.	CHPE-355	Environment Impact Assessment	3	0	0	3
6.	CHPE-356	Industrial Rheology	3	0	0	3
7.	CHPE-357	Optimization Techniques	3	0	0	3
8.	CHPE-358	Petroleum Recovery Technology	3	0	0	3
9.	CHPE-359	Petroleum Refining Technology	3	0	0	3
10.	CHPE-360	Polymer Science and Engineering	3	0	0	3
11.	CHPE-361	Process Plant Utilities	3	0	0	3
12.	CHPE-362	Process Intensification	3	0	0	3
13.	CHPE-363	Paint Technology	3	0	0	3

Departmental Electives - III, IV, V

Sr.	Code	Course Title	L	Т	Р	Credit
No.						
1.	CHPE- 451	Corrosion Engineering	3	0	0	3
2.	CHPE -452	Cement Technology	3	0	0	3
3.	CHPE -453	Energy Management and Audit	3	0	0	3
4.	CHPE- 454	Heterogeneous Catalysis and Reactor	3	0	0	3
		Design				
5.	CHPE- 455	Hydrocarbon Engineering	3	0	0	3
6.	CHPE- 456	Industrial Environmental	3	0	0	3
		Management				
7.	CHPE- 457	Introduction to Multiphase Flow	3	0	0	3
8.	CHPE- 458	Natural Gas Engineering	3	0	0	3

9.	CHPE- 459	New and Renewable Energy	3	0	0	3
		Resources				
10.	CHPE- 460	Petrochemical Technology	3	0	0	3
11.	CHPE- 461	Biochemical Engineering	3	0	0	3
12.	CHPE- 462	Catalysis	3	0	0	3
13.	CHPE- 463	Pressure Driven Membrane	3	0	0	3
		Separation Processes				
14.	CHPE-464	Process Instrumentation and	3	0	0	3
		Analytical Methods				
15.	CHPE-465	Introduction to Colloids and	3	0	0	3
		Interfacial Science and Engineering				
16.	CHPE-466	Fluidization Engineering	3	0	0	3
17.	CHPE-467	Fertilizer Technology	3	0	0	3
18.	CHPE-468	Biorefinery and Bioproducts	3	0	0	3
		Engineering				

OPEN ELECTIVES

List of Open Electives

Sr.	Code	Course Title	L	Т	P	Credit
No.						
1.	CHOE- 401	Hydrocarbon Engineering	3	0	0	3
2.	CHOE-402	Energy Management and Audit	3	0	0	3
3.	CHOE-403	Polymer Science and Engineering	3	0	0	3
4.	CHOE-404	Industrial Safety and Hazards	3	0	0	3
		Management				
5.	CHOE-405	Environmental Engineering	3	0	0	3
6.	CHOE-406	Environment Impact Assessment	3	0	0	3
7.	CHOE-407	Oil and Natural Gas Economics	3	0	0	3
8.	CHOE-408	New and Renewable Energy Resources	3	0	0	3
9.	CHOE-409	Corrosion Engineering	3	0	0	3
10.	CHOE-410	Biorefinery and Bioproducts Engineering	3	0	0	3

Syllabus

Course Code			C1		rse Title	1			L	Т	Р			
CHPC-201					cess Calc	ulations			3	1	0			
Pre-requisites:	Basic	Knowledg	e on matl	nematics										
Course	This c	ourse wil	1 prepare	e studen	ts to mal	ke analy	sis of ch	nemical p	rocesses	s thro	ough			
objectives:		ations, wh												
		ts are int								and s	olve			
	materia	al and ene	rgy balan	ces in pr	ocesses w	rith and v	without cl	nemical re	eactions.					
Syllabus:		luction to												
		and dim												
		rement, ba					mical eq	uations a	nd stoic	hiom	etry,			
		g and exce		nt, conv	ersion and	l yield.								
		Material Balance Material balance, program of analysis of material balance problems, solving material												
		e problen												
		ms involv	ing chem	ical reac	tions, mul	ltiple sub	osystems,	recycle,	bypass, a	and p	urge			
	calcula													
	Gases Vapors, Liquids and Solids													
	Ideal gas law calculations, real gas relationships, vapor pressure and liquids, saturation,													
	partial saturation and humidity.													
		y Balance												
		pts and ur												
		e without												
		ble proces			anical en	ergy bala	ances, he	ats of sol	ution and	d miy	king,			
~		ometric ch												
Course		nderstand												
Outcomes:		ble to perf			energy ba	lances or	n chemica	al process	es/equip	ment				
		ithout and				_			-		_			
		ble to drav		-	h and solv	e the pro	oblems in	volving re	ecycle, p	urge	and			
		pass in a j				0								
		nderstand					vapors a	nd liquids	5.					
Mapping of cours	e objectiv	res (CO) &	k progra	m outco										
Course Outcomes	1	2	3	4	Progra	m Outco	omes 7	8	9	1				
Outcomes	$\frac{1}{}$	$\frac{2}{}$	$\sqrt{\frac{3}{\sqrt{2}}}$	- - √	$\sqrt{\frac{3}{\sqrt{2}}}$	v √		0	,	1				
1							V	al		<u> </u>				
1 2	1						N							
			$\sqrt{1}$	$\sqrt{1}$			N	 √						

Recommended books:

1. Himmelblau D. M., "Basic Principles and Calculations in Chemical Engineering", Prentice Hall, (1998).

- 2. Haugen O. A., Watson K. M. Ragatz R. A., "Chemical Process Principles (Part-I): Material and Energy Balances", Asia Publishing House, (1995).
- 3. Bhatt B. I., Vora S. M., "Industrial Stoichiometry", Tata McGraw Hill Publishing, New Delhi, (1987)
- 4. Reklaitis G. V., "Introduction to Material and Energy Balances", Wiley, New York, (1983)
- 5. Felder R. M., Rousseau R. W., "Elementary principles of Chemical Processes", 2nd Edition, Wiley, New York, (1986).

Course Code	Course Title		T	P								
CHPC-203		3	1	0								
Pre-requisites:	None											
Course	To understand the fundamentals of fluid flow phenomena. Deriving the mass											
objectives:	balance equations from first principles. To learn about the transportation of	luid	s and	flo								
	measuring devices.											
Syllabus:	Introduction											
	Introduction, Ideal and real fluids, Extensive and Intensive Properties, Specific											
	density and Specific gravity, Viscosity, Surface Tension and Capillarity, Ev	apor	ability	/ ar								
	Vapour pressure, Newtonian & Non Newtonian fluids.											
	Fluid statics											
	Pressure, Hydrostatics law, Pascal's Law, Different types of manometer, Con											
	Decanter, Centrifugal decanter and other pressure- measuring equipment's, D meta centric height.	etern	ninati	on								
	Fluid kinematics and Dynamics											
	Reynolds transport theorem, Classification of fluid flows, streamline, streak	line	, and	Pa								
	lines, Flow rate & continuity equation, Bernoulli's Theorem, Kinetic energy correction factor											
	and momentum correction factor in Bernoulli's equation.											
	Laminar viscous flow and Flow measurement devices											
	Flow regimes and Reynolds numbers, Laminar flow in circular pipes (Hagen Poiseuille Law)											
	Orifice meter; Venturimeter; Weirs, concept of area meters: rotameter;	Loca	ıl vel	oci								
	measurement: Pitot tube. Hot wire anemometer, mass flowmeter.											
	Hydraulic pumps											
	Pump Classification & Applications, Centrifugal pumps vs Reciprocating	pun	nps, p	oun								
	losses and Efficiencies, Multistage pumps, Work and power Input, Cavitation	and	maxi	mu								
	Suction lift, specific and minimum speed.											
	Flow around Immersed Bodies											
	Introducing the concepts of transition and turbulence. Drag force, lift and dr	ag co	oeffici	ent								
	drag on Flat Plate, Circular Cylinder and Sphere.											
Course	1. After studying this subject, students would be able to measure pressure dro	p, flo	ow rat	es								
Outcomes:	etc. for incompressible and compressible fluids.											
	2. Ability to select pumps, valves, and would be able to calculate power requi	reme	ent for	ſ								
	pumping as well as agitation operations.											
	3. Ability to analyze the fluid flow problems with the application to the mom		n bala	inco								
	4. Applying the principles of fluid mechanics to chemical engineering problem											

Course		Program Outcomes													
Outcomes	1	2	3	4	5	6	7	8	9	10	11				
1															
2											\checkmark				
3															
4															

- 1. Smith J. C., McCabe W. L., Harriot P. H., "Unit Operations of Chemical Engineering", McGraw Hill (2001).
- 2. Frank M. White, "Fluid mechanics", 7th Edition, McGraw Hill (2010).
- 3. Kumar D. S., "Fluid Mechanics & Fluid power engineering", S. K. Kataria & Sons, (2004).
- 4. Timoshenko S. P. and Young D. H., "Engineering Mechanics", McGraw Hill, (1937).
- 5. Perry's, "Handbook of Chemical Engineering", 7th Edition, McGraw Hill, (1997).

Course Code				Cou	rse Title				L	Т	Р							
CHPC-205			Cł	emical '	Technolog	gy -I			3	0	0							
Pre-requisites:	None																	
Course					the vari													
objectives:	processes	s for th	e manut	facture of	of Soaps	and De	tergents,	Fertilize	ers, Caus	stic sc	oda,							
	Chlorine	, Hydroc	hloric ac	id, Soda	ash, Cem	ent and C	Glass.											
Syllabus:	Soaps ar																	
					nistry, Con					fatty								
					ication of													
	Manufac	ture of d	etergents	s like alk	yl benzen	e sulphoi	nate, Sod	ium alka	ne sulpho	onate.								
	Fertilize	rs																
					lassificatio													
					facture of						cid,							
				alues. C	Corrosion p	oroblems	and mat	erials of o	construct	ion.								
		Chlor Alkali Industry Electrochemistry of brine electrolysis, current efficiency, energy efficiency, diaphragm																
					ollution a					stic sc	oda,							
		•	loric aci	d; corros	sion proble	ems and a	materials	of constr	ruction.									
		Soda Ash																
	Manufacturing, Solvay and modified Solvay process, materials of construction																	
		nental co	nsiderati	ons and	corrosion	problem	s.											
	Cement																	
	Raw mat	erials, T	ypes of c	ement, I	Properties	Raw materials, Types of cement, Properties of cement, Manufacture of cement.												
	Glass																	
Common					manufact													
Course		to analy	ze the fl	ow of ra	w material			lucts qua	ntitativel	y and								
Course Outcomes:	quali	to analy	ze the fl in each s	ow of rav tep of pr	w material	ls to finis	shed proc	•		y and								
	quali	to analy	ze the fl in each s	ow of rav tep of pr	w material	ls to finis	shed proc	•		y and								
	quali 2. Able	to analy itatively to unde	ze the fl in each s erstand th	ow of rav tep of pr ne unit op	w material	ls to finis and unit p	shed proc	involve	1.	-	nd							
	quali 2. Able 3. Able	to analy itatively to under to ident	vze the fl in each s erstand th ify proce	ow of ra- tep of pr le unit op ess flow o	w material ocess. perations a	ls to finis and unit p of differe	shed proc processes nt chemi	involved cal proce	1.	-	ıd							
	quali 2. Able 3. Able to un	to analy itatively to unde to ident iderstance	vze the floor in each serstand the ify proce the vari	ow of ra- tep of pr te unit op tess flow of tous asso	w material ocess. perations a diagrams o	ls to finis and unit j of differe ineering	shed proc processes nt chemi problem	involved cal proce s.	1. ess indust	ries an	ıd							
Outcomes:	quali 2. Able 3. Able to un 4. Abili	to analy itatively to unde to ident iderstance ity to get	vze the fl in each s erstand th ify proce the vari knowled	ow of rav tep of pr le unit op less flow o ous asso lge on m	w material ocess. perations a diagrams of ciated eng naterials of	ls to finis and unit p of differe ineering f construe	shed proc processes nt chemi problem	involved cal proce s.	1. ess indust	ries an	ıd							
Outcomes:	quali 2. Able 3. Able to un 4. Abili	to analy itatively to unde to ident iderstance ity to get	vze the fl in each s erstand th ify proce the vari knowled	ow of rav tep of pr le unit op less flow o ous asso lge on m	w material ocess. perations a diagrams of ciated eng naterials of comes (PC	ls to finis and unit p of differe ineering f construe	hed proc processes nt chemi problem ction and	involved cal proce s.	1. ess indust	ries an	ıd							
Outcomes: Mapping of cour	quali 2. Able 3. Able to un 4. Abili	to analy itatively to unde to ident iderstance ity to get	vze the fl in each s erstand th ify proce the vari knowled	ow of rav tep of pr le unit op less flow o ous asso lge on m	w material ocess. perations a diagrams of ciated eng naterials of comes (PC	ls to finis and unit I of differe ineering f construe))	hed proc processes nt chemi problem ction and	involved cal proce s.	1. ess indust	ries an	ıd							
Outcomes: <u>Mapping of cour</u> Course	quali 2. Able 3. Able to un 4. Abili se objective	to analy itatively e to under to ident iderstand ity to get es (CO)	vze the fl in each s erstand th ify proce l the vari knowled & progr	ow of rav tep of pr le unit op ess flow o ous asso dge on m ram outo	w material occess. perations a diagrams o ciated eng naterials of comes (PC Progra	ls to finis and unit p of differe ineering <u>f construe</u>)) am Outc	hed proc processes nt chemi problem ction and omes	s involved cal proce s. corrosio	1. ess indust n proble	mies an	ıd							
Outcomes: <u>Mapping of cour</u> Course Outcomes	quali 2. Able 3. Able to un 4. Abili se objective	to analy itatively to under to ident iderstance ity to get es (CO)	ze the fl in each s erstand th ify proce l the vari knowled & progu	bw of ravitep of prive unit op e unit op ess flow of ous asso dge on m ram outor 4	w material occess. perations a diagrams o ciated eng naterials of comes (PC Progra 5	ls to finis and unit p of differe ineering f construct) am Outc 6	hed proc processes nt chemi problem ction and omes	s involved cal proce s. corrosio	1. ess indust n proble	mies an	ıd							
Outcomes: Mapping of cour Course Outcomes 1	quali 2. Able 3. Able to un 4. Abili se objective 1 √	to analy itatively to under to ident iderstance ity to get es (CO)	vze the fluin each serstand the fluin each serstand the varies of the varies where the varies of th	bow of raw tep of prine unit op eass flow of ous asso lge on m ram outco 4 	w material occess. perations a diagrams o ciated eng naterials of comes (PC Progra 5 √	ls to finis and unit p of differe ineering f construct) am Outc 6	hed proc processes nt chemi problem ction and omes	s involved cal proce s. corrosio	1. ess indust n proble	mies an								

- 1. Austin G.T., Shreve's Chemical Process Industries International Student Edition, 5th Edition, McGraw Hill Inc., 1998.
- 2. Sittig M. and GopalaRao M., Dryden's Outlines of Chemical Technology for the 21st Century, 3rd Edition, WEP East West Press, 2010.
- 3. W.V.Mark, S.C. Bhatia "Chemical Process Industries volume I and II", 2nd Edition 2007
- 4. Shukla S. D., Pandey G. N., "A text book of Chemical Technology, Vol. I", Vikas Publishing House Pvt. Ltd., New Delhi.
- 5. Jacob A. Moulijn, MichielMakkee and Annelies van Diepen , Chemical Process Technology, 1stEdn, 2001.

Course Code	9				Course T					L	Т	Р	
CHPC-207		•		Mech	nanical O	perations	5			3	1	0	
Pre-requisites:		None		. 1.		<u>C</u> (1		.1	1 1	1 4 1			
Course Objectiv		The course nechanical											
		ikephysica											
		rocesses f											
		gitation ar											
	S	Size Reduc	tion										
Syllabus:	a g	Particle siz nalysis, co grinding. Screening											
	S c	creening apacity of		nt, capac	ity and e	ffectiven	ess of s	screen, e	ffect of	mesl	h siz	e on	
		lettling				6						6	
		Flow aroun particles in											
	Ē	Filtration				•							
		Classificati								ake	filtra	tion,	
		larification			rification,	centrifug	al settlin	g proces	s.				
		Agitation &			. .				_	-			
		Agitation of						impellei	rs, veloci	ity a	nd p	ower	
		onsumptic Iuidizatio		ated vess	els, blendi	ng & mix	ang.						
		acked bed		prosity f	low thoug	h a hed c	f particl	es fluidi	zation &	fluid	lized	hed	
		onditions 1								muit	iizcu	ocu,	
		olid Hand		Lution, m	initianit v	<i></i>	pes of fi	uluizutio					
		Flow of so	0	ravitv. tr	ansport of	solids b	v screw	/ belt co	nvevers.	cvcl	ones.	bag	
									5	5	,	0	
Course Outcome		filters, electrostatic precipitators, particulate collection system. 1. The student would understand the physical properties, property measurement and											
		handling	g of solid	-solid and	d solid-flu	id mixtur	es.						
	2	. The stud	lent woul	d unders	tand separ	ation pro	cesses fo	or solid-so	olid and s	olid-	-fluid		
		mixtures			I	1							
	3	. To unde		e process	es involve	d in agita	tion and	mixing	of liquids				
		•. To unde		-		-		-	-		and f	ไดพ	
			packed a			reactions (of bolid b	noruge ur		, 1115,	una	10 10	
Apping of course	outoor	U											
	e outcon	ics (UU) (x progra	in outco		m Outo	moc						
Course	1	2	2	4	Frogra	am Outc		8	9	1	10	11	
Outcomes	$\frac{1}{\sqrt{1-1}}$	2	3 √	4 √	5	6 √	7	0	<u>у</u>		LV	11	
1	$\frac{}{}$		v	v									
2	N	N				N					N		

 $\sqrt{}$

 $\sqrt{}$

3

4

1. Smith J. C., McCabe W. L., Harriot P. H., "Unit Operations of Chemical Engineering", McGraw Hill, (2001).

 $\sqrt{}$

2. Brown G. G. "Unit Operations", 1st Edition, CBS Publisher, (2004).

 $\sqrt{}$

- 3. Richardson and Coulson "Chemical Engineering Vol II", 5th Edition, Butterworth-Heinemann, (2002).
- 4. Perry's, "Handbook of Chemical Engineering", 7th Edition, McGraw Hill, (1997).
- 5. Bhattacharya B. C., Narayanan C. M., "Mechanical Operation for Chemical Engineers", Khanna Publishers, (1992).

 $\sqrt{}$

 $\sqrt{}$

Course Code	Course Title L T P											
CHPC-209	Material Science for Chemical Engineers300											
Pre-requisites:	None											
Course	To impart the basic concept of material science. To understand the various properties,											
objectives:	corrosion and heat treatment of engineering materials. To understand the engineering											
	requirement and selections of materials based on the properties for various applications											
Syllabus:	Introduction											
	Classes of engineering materials - engineering requirement of materials - selection of											
	materials											
	Structure and Imperfections in Crystals											
	Crystal structure Crystal geometry, structure of solids, methods of determining structures.											
	Imperfection in crystals - types of imperfection. Point imperfection, diffusion in solids -											
	self diffusion Fick's law, Applications of diffusion.											
	Properties and Corrosion of Materials											
	Mechanical, Electrical and magnetic properties of materials - Deformation of materials -											
	Heat Treatment techniques - corrosion, theories of corrosion - control and prevention of											
	corrosion.											
	Metals											
	Engineering materials- ferrous metals - Iron and their alloys Iron and steel Iron carbon											
	equilibrium diagram. Non-ferrous metals and alloys - Aluminium, copper, Zinc, lead,											
	Nickel and their alloys with reference to the application in chemical industries. Material of											
	Construction for various reactor vessels and other equipments.											
	Non Metals											
	Inorganic materials: Ceramics, Glass and refractories - organic materials: wood, plastics,											
	and rubber and wood - Advanced materials-Biomaterials, nanomaterials and composites											
	with special reference to the applications in chemical Industries.											
Course	1. Understand the basics knowledge such as internal structure, crystal geometry, crystal											
Outcomes:	imperfection of the engineering materials.											
	2. Understand the various properties and corrosion behavior of the selected materials in											
	chemical industries.											
	3. Able to get experience in the metallic and nonmetallic material selection and handling											
	material in chemical engineering in the areas of equipment design.											
	4. Able to get knowledge on advanced materials and their application.											

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	omes (PO))									
Course		Program Outcomes													
Outcomes	1	2	3	4	5	6	7	8	9	10	11				
1						\checkmark									
2						\checkmark	\checkmark								
3						\checkmark									
4															

1. Lawrence H. Van Vlack, "Elements of Material Science and Engineering", 1971.

2. S. K. Hajra Choudhury, "Material Science and processes", 1st Edn., 1977. Indian Book Distribution Co., Calcutta.

3. William D. Callister, "Materials Science and Engineering",7th edn, John Wiley & Sons, Inc.

4. V. Raghavan, Materials Science and Engineering, Prentice Hall.

5. Sidney H Avner, Introduction to Physical Metallurgy, 2nd edition, Mc Graw Hill..

Course Code	Course Title	L	Т	Р
CHPC-221	Fluid Mechanics Lab	0	0	3
Pre-requisites:	Basic knowledge of Fluid mechanics			
Course objectives:	The course aims on the properties of fluids and the energy relationships in f			
	fluid mechanics approach to solve typical problems in turbulent flow, calcul			
	boundary layers with pressure gradient, transition from laminar to turbulent			
	and mass flow rates through the Venturi meter and Orifice meter and efficier	icy of	pumps	5
List of Experiments:	1. To find coefficient of friction in pipes of different materials.			
	2. To verify Bernoulli's equation using hydraulic bench.			
	3. To find losses due to sudden expansion and sudden contraction in pipes.			
	4. To calculate Reynold's number for laminar and turbulent flow.			
	5. To calculate metacentric height.			
	6. To determine volumetric and mass flow rates through the Venturi meter.			
	7. To determine volumetric and mass flow rates using Orifice meter.			
	8. To determine the efficiency of a pump.			
	9. To calibrate and to find mass flow rate through Rotameter.			
	10. To find the discharge coefficient of V-notch and rectangular notch.			
Course Outcomes:	1. The student must be able to approach and solve typical problems in fluid	dyna	mics a	t the
	appropriate level.			
	2. Students will be able to understand the fluid dynamics and also the princ	iples	of turb	ulent
	flow, calculation of turbulent boundary layers with pressure gradient	, tran	sition	from
	laminar to turbulent flow.			
	3. Learn tomeasurevolumetric and mass flow rates through the Venturi 1	neter	and O	rifice
	meter and efficiency of pumps.			
	4. Ability to understand and analyze the applications to industrial flows.			

Mapping of cou	rse objecti	ives (CO)	& progra	am outco							
Course Outcomes	1	2	3	4	Progra	am Outco 6	omes 7	8	9	10	11
1											
2											
3											
4			\checkmark	\checkmark							\checkmark

Recommended books:1. Smith J. C., McCabe W. L., Harriot P. H., "Unit Operations of Chemical Engineering", McGraw Hill (2001).

2. Lab Manual

Course Co					Course					L	Т	Р			
CHPC-22					nical Op		Lab			0	0	3			
Pre-requisites:		Basic know													
Course Object	1	The cours concepts s mixtures, filtration, a	uch as, t separatio	the prope on proce	erties, size sses for	e-reductionsolid-soli	on and l id and s	handling solid-flui	of solids d mixtur	s and s res, co	olid-	fluid			
List of Experin	nents:		mination cteristics		wer cons d.	sumption	and s	tudy of	agitatio	on and	1 mi	xing			
			mination olds num		coefficie	nt from	the plot	of drag	coeffici	ent vs	mod	fied			
		modif		nolds no	e drop thi . vs. mod										
					on efficiei										
		5. Determination of screening efficiency in a vibrating screen.													
		 Plate resista 		ne filter	press: de	terminati	on of c	ake resis	tance an	d filter	med	lium			
		7. Deter	mination	of speci	fic cake re	sistance	in consta	ant pressi	ire vacut	um filtrations.					
					acteristics		filter.								
		9. To stu	idy the fl	ow throu	igh a helic	al coil.									
		10. To stu	idy the ci	rushing e	efficiency	of a roll of	crusher.								
		11. To stu to des			haracterist or the give			ttling exp	eriment	and us	e the	data			
		12. To de													
Course Outcon		1. To ex	periment	ally anal	yze the pr uid mixtur	operties,		uction, fi	ltration a	and har	ndling	of			
			periment		yze sepai		ocesses f	or solid-s	olid and	solid-f	luid				
		3. To ex	periment	ally anal	yze the p	arameter	s involve	ed in agit	ation and	l mixin	g of				
		liquid 4. To ex		ally anal	yze the w	orking	nd annli	ontions of	fnackad	and fly	idizo	d			
		4. 10 ex beds	permen	ally alla	yze the w	orking a	nd appn		Граскец		nuize	u			
Mapping of cou	rse outcor	nes (CO)	& progr	am outc	omes (PO)									
Course					Progra	am Outc	omes								
Outcomes	1	2	3	4	5	6	7	8	9	10		11			
1	\checkmark	T	\checkmark			\checkmark		1	T						
2												_			
	1 1	1	1	1 1	1		-	1	1	1					

 $\sqrt{}$

 $\sqrt{}$

1. Smith J. C., McCabe W. L., Harriot P. H., "Unit Operations of Chemical Engineering", McGraw Hill, (2001).

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

2. Lab manuals

3 4

Course Code CHPC-202		0	homical		rse Title	moderne	nica		L 2	T 1	P
	An intr				ring Ther			otion will	3	1	0
Pre-requisites: Course		oductory boduce the									hoir
objectives:		tion to									
objectives.		dynamics	0		-	-					
		ion of vol									
		n thermod									
		tions phas									
		iquid equl					-	-	. 1.	·, ·· r	
Syllabus:	-	uction to '		-		1	1				
·		ctory con		•		ble and	Irreversi	ble Proce	esses; Fii	st law	v of
		odynamics									
		flow pro									
	engines	s, Entropy,	, Entropy	changes	of an idea	l gas, Thi	rd law of	f thermod	ynamics.		
		etric prop									
		ehaviour f							of Virial	equation	ons,
		equation of	f state, G	eneralize	d correlati	ons, Acei	ntric facto	or.			
	Heat E										
		e Heat E									
		rd heat of			on, combu	stion, He	at of rea	ction at h	igher ter	nperat	ure,
		fects of In									
		odynamic					T 1				
		ell relation			ties, two p	hase syst	em, Ther	modynar	nic diagra	am	
	-	orium and		•	al Datas	4: -1 A		- f			: .
		a of equ			cal Poten	uai, Ap	plication	or eq	umorium	crite	ma,
		isclapeyor Equilibria		1.							
		ty, Determ		fugacity	of nura su	hetancos	Fugacity	v in mivt	ura Idaa	l solut	ion
		properties									
		ient equati		luid pilds	e properti	.5 110111	V LL uuu	<i>i</i> , <i>i</i> i i i i i i i i i i i i i i i i i i	y coeffic	ients,	ana
		cal Reacti		libria							
		on ordinate			tiple react	ions . coi	ndition of	f eauilibr	ium for a	chem	ical
		ns, Standa									
		tion of equ									
		al equilibr				0	8 T T		,	0	
Course		ility to u		I the bas	ic concep	ots of the	ermodyn	amic suc	h as ter	nperat	ure,
Outcomes:		ssure, syst			-		•			1	
	-	ility to ap		-		-	-		ns relate	d to f	low
		cesses and						0 1			
		ility to de				mass, h	eat and v	work for	closed an	nd con	ıtrol
		ume syste			e						
	4. Ab	ility to u	Inderstan	d the ho	mogeneo	is gas p	phase re	actions a	and heter	rogene	ous
	che	emical equ	ilibrium.								
Mapping of cours	se objecti	ves (CO)	& progr	am outco	mes (PO)						
Course					Progra	am Outco	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	
1	2	2	2			2			2		

lapping of cou	ırse objecti	ves (CO)	& progra	am outco	mes (PO)								
Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1														
2														
3														
4											\checkmark			

1. S.I. Sandler, Chemical, Biochemical and Engineering Thermodynamics, 4th Edition, Wiley India, 2006.

2. J.M. Prausnitz, R.N. Lichtenthaler and E.G. Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice Hall, 1998.

3. J.W. Tester and M. Modell, Thermodynamics and its Applications, 3rd ed., Prentice Hall, 1999.

4. R.C. Reid, J.M. Prausnitz and B.E. Poling, Properties of Gases and Liquids, 4th ed., McGraw-Hill, 1987.

5. R. Balzheiser, M. Samuels, and J. Eliassen, Chemical Engineering Thermodynamics, Prentice Hall, 1972.

Course (Course 7					L	T	P
CHPC-					Heat Tra	nster				3	1	0
Pre-requisit		nowledge										
Course	To understa											
objectives:	in various h	eat transfe	er equipn	nent in pr	ocess indu	stries. To	o learn al	bout the o	lesign of	heat exc	hang	ers
-	and evapora	ators, react	or heatin	g and coc	oling syste	ms						
Syllabus:	Conduction	1										
	Basic law of steady state conduction their applic capacity me Convection Convection transfer coe separated b extended su Forced Con Over a fla Buckinghar flows. Hea convection	e heat con through c ations for thod of un heat tran fficient, he y cylindrie rfaces. nvection a at plate, n Pi-theore t transfer	duction t ylinders, process isteady st sfer and eat transf cal wall nd Free thermal em, heat correlat	hrough a spheres a equipme ate condu the condu the condu cer betwee (pipes), Convecti boundary transfer c	a composition and variab nt and pip action. Except of he en fluids s critical/ c ion y layer, correlation	te solid a ble area c belines, F at transfe eparated optimum dimensio s- interna	nd its e of solids, ourier's er coeffi by plane insulatio nless gr al and ex	lectric an different law in t cient, inc wall, he n thickne roups an ternal flo	alogue, s insulatir hree dime lividual a at transfe ess, heat d dimen ws, lamir	steady sta ng materi ensions, and over tr betwee transfer sional a nar and tu	ate h als a lumj all h n flu throu naly urbul	neat neat neat neat ngh sis, ent
	Heat Trans Boiling phe condensatio condensable Radiation Basic princ law, the Ste & gray bodi Evaporatio Types of e	nomena a on phenom e gases, dru ciple of rad fan Boltzr ies. n	nd analy iena, film op wise c diation fr nann law	sis of boi on condensat condensat om a sur r, Kirchho	sation on ion. face, blacl off's law, g	a vertica kbody rac gray body	l surface diation, F y, radiatio	(Nusselt Planck's l on exchai	equation aw, Wien nge betwo	n, effect n's displa een black	of n icem	on- ent lies
	elevation.				_			-			g po	лп
Course		bility to u										
Outcomes:		y the end									throu	ıgh
		onstant and					-					
		evelop co			elementar	y dimens	sional an	alysis ar	nd compr	ehend th	ne la	ıws
	4. A	overning r bility to d eating and	esign and	d analyze	the perfo	ormance (of heat e	xchanger	s and eva	porators,	read	ctor
Iapping of co	ourse objecti	ves (CO)	& progra	am outco	mes (PO)							
Course		, í				am Outc	omes					
Outcomes	1	2	3	4	5	6	7	8	9	10		11
	1		5		5	U	,	0 √	,	10		$\sqrt{11}$
1	N							N			I	N

1 2

3

4

- 1.
- 2.
- J. P. Holman, "Heat Transfer", 9th Edition, Tata McGraw-Hill, New Delhi, (2004). Frank P. Incropera, "Fundamentals of heat and mass transfer" Volume 1, John Wiley, (2007). Frank Kreith, Mark. S. Bohn, "Principles Of Heat Transfer", 4th Edition, Harper & Row Publishers, (1986). 3.

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

4.

 $\sqrt{}$

 $\sqrt{}$

D. Q. Kern, "Process Heat Transfer", McGraw Hill Book Co., (1997).
J. M. Coulson, J. F. Richardson, "Chemical Engineering" Volume 1, Pergamon Press, (1999). 5.

Course Code	Course Title	L	Т	Р
CHPC-206	Chemical Technology - II	3	0	0
Pre-requisites:	In continuation with Chemical Technology-I			
Course Objectives:	Students will have an insight to the various raw materials, reaction	chen	nistry	and
	processes for the manufacture of Paper, Cane sugar, Polymers, Agricu	ltural	resid	lues,
	Sulphuric acid and Oils and Fats.			
	Regenerated Cellulose			
Syllabus:	Growth of industry, raw materials, pre-treatment, pulping, manufac	ture	of pa	aper,
	recovery of chemicals, environmental considerations, viscose rayon.			
	Cane sugar			
	Cane production and varieties, manufacturing equipment and technolo			
	refining, bagasse utilization, energy requirements and conservation,	envi	ronme	ental
	considerations.			
	Polymers			
	Nomenclature of polymers and their classification, modes of poly			
	addition, condensation, step growth and chain growth polymerizatio			
	polymerization. Selected industrial polymerization, including plastics, s	yntne	tic 11	bers,
	synthetic and natural rubbers.			
	Agricultural Residue Utilization Availability, Characteristics, energetic, and energy contents, modes of en	orau	*0001	0.00
	gasification, pyrolysis, deoxygenation, chemicals from agricultural residue		Tecov	ery,
	Sulphuric acid	-5.		
	Raw materials and manufacture of sulphuric acid			
	Oils and Fats			
	Status and scope: Major oil seeds production in India; expression, solv	ient e	extract	tion
	energy and solvent requirements, minor oil seeds and other oil bea			
	Hydrogenation of oils.	8		,
Course Outcomes:	1. To understand the manufacturing processes in various chemical processes	ess in	dustri	es.
	2. To understand the different raw materials, process parameters and ind			
	variations.			
	3. Able to identify process flow diagrams of different chemical process	indus	tries a	and
	to understand the various associated engineering problems.			
	4. Ability to get knowledge on materials of construction and corrosion	oroble	ems.	

Mapping of cou	rse outcon	nes(CO) &	k progra	m outcor	nes (PO)									
Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1														
2														
3														
4														

- 1. Dryden C. E., "Outlines of Chemical Technology", 2nd Edition, East–West Press Pvt. Ltd., New Delhi, (1973). Austin G. T., "Shreve's Chemical Process Industries", 5th Edition, McGraw Hill Book Company, New Delhi, (1986).
- 2. Chemical Engineering Education Development Centre "Chemical Technology I, II, III, IV, Manual of Chemical Technology, Indian Institute of Technology, Madras".
- 3. Shukla S. D., Pandey G. N., "A text book of Chemical Technology, Vol. I", Vikas Publishing House Pvt. Ltd., New Delhi. (1986).
- 4. Shukla S. D., Pandey G. N., "A text book of Chemical Technology, Vol. II", Vikas Publishing House Pvt. Ltd., New Delhi. (1986).

Course Code CHPC-208	Course Title	L 3	Т 0	P 0						
Pre-requisites:	Energy Technology None	3	U	0						
Course	The course describes the fundamentals and main characteristics of fossil fu	els an	d alter	mate						
objectives:	energy sources along with their conversion processes.	cis an	u unter	nate						
Syllabus:	Introduction									
·	 Energy sources (conventional & non-conventional), renewable energy re & secondary energy sources, energy chain, energy demand, national en plan, world energy scenario. Solid Fuels Coal, origin, composition & classification of coal, Properties of coal, 	ergy s classif	strateg	y & n of						
	Indian coals, petrology of coal, washing of coal, storage of coal. Coa Combustion equipments- Fluidised bed combustion, different type gasification of coal, Lurgi process, Winkler process, Kopper–Totzek proc of solid fuels, Overview of thermal plant. Liquid Fuels	s of	furna	aces,						
	Petroleum and related products, origin, occurrence and reserves, nature of petroleum crudes, classification and characteristics of petroleum, Refining Unit Process: Cracking, Hydrocracking, Reforming, Alkylation, Polymerization, Isomerization. Petroleum products: naphtha, motor gasoline, aviation gasoline, kerosene, diesel oil, gas oil, fuel oil, lubricants, petroleum waxes, petroleum coke. Overview of petroleum refinery. Gaseous Fuels									
	Gaseous fuels classification, Wobbe Index natural gas, methane from coal water, carburetted water gas, coal, blast furnace, refinery gases, and LPG.	mines,	prod	icer,						
	Alternate Energy Technologies Nuclear energy-Fission, fusion, nuclear fuel,fast breeder reactor. So radiation & related terms, measurement of solar radiation, solar en applications & advantages of various collectors. Wind energy-Basic selection, basic components of wind energy conversion systems (WECS), WECS, Bioenergy-Introduction, classification of biomass, biom technologies, Ocean energy, Geothermal energy ,Hydroenergy, fuel cell Energy Storage Technologies	ergy princ classi ass c techn	collec iples, ficatio conver ology	tors, site on of csion and						
Course Outcomes:	 The students will understand the concepts of coal origin, classification, their conversion technologies for energy production. Ability to understand different types of unit process involved in petrole Able to gain knowledge on manufacturing process of gaseous fuels and utilization. 	um re								
	4. Able to acquire the knowledge on various alternate energy technologie importance in fulfilling the present day energy needs.	s and t	heir							

Mapping of cou	Mapping of course objectives (CO) & program outcomes (PO)												
Course					Progra	am Outc	omes						
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1													
2													
3													
4													

- 1. Gupta O. P., "Elements of Fuels, Furnaces and Refractories", Khanna Publishers
- 2. Brame J. S., King J. C., "Fuels-Solid, Liquid and Gaseous", St. Martin Press
- 3. Sarkar S., "Fuels and combustion", Longman publishers India Ltd., 2nd Edition.
- 4. Energy Technology by Rao & Parulaker.
- 5. Energy Sources 2nd Ed. by G. D. Rai, Khanna Publications, New Delhi

Course Code			_		se Title				L	Т	Р
CHPC-210		1 .			ipment D		1 6		2	0	0
Pre-requisites:		al science a									
Course		ourse is c		-	-			-			1 01
objectives:		ent. It also				nanical d	esigns of	various	equipmer	it.	
Syllabus: Course Outcomes:	Nature standar design environ Materia equipm Storag Various volatile roofs u spheric self-sup Mecha Mecha Mecha Mecha Introdu weight, plate, a ring stif Agitato Types include Reactio Introdu types o reaction 1. Intri ind 2. Thi	uction to p of process ds, codes, pressure, imental co als of cons- ient. e tanks s types of e and nonv sed for sto al storage oporting ar nical desig of suppor action and , wind load of agitato is twisting on vessels of jackets I n vessels, I roduce to ustry. is course e e students	s equipm and the design te nsiderati struction storage olatile lic orage tanl tanks, ba d column gn n of tall v ts classification ts , bolting classification s, bolting classification the plain, <u>Heat trans</u> standards	ent, gen, eir signif emperatur ons in de and sele tanks ar juids, sto cs, manh- use plates n support vessels fo ation of s load, and g chairs, vessels selectio equivale half coi <u>sfer coeff</u> s for the e student:	eral design ficance, ec e, design proc ction for ad applica rage of ga oles, nozz , shell pla ed roofs r distillation upports, c d period o design of n, applica nt bending systems, of l, channel, <u>ficients in of</u> mechanic	quipmen stress, r edure. P process tions, A ses, Loss les and r tes, roof on and al lesign of f vibratic bracket ations, b g momen design of limpet o <u>coils.</u> al design e design	t classifi eview of rincipal a equipment tmosphere ses in sto nounting plates, w osorption skirt sup on, design supports. affling, t, design vessels, oil. Study n of equ codes.	cation a fabricati stresses, nt, lining ric tanks, rage tank s. Design vind girde columns poorts, st n of base Design power c of blades study an y and des	nd their ion techn theories s and co s tanks f as, Variou of cylin ers, curb resses du plate, ski of saddle onsumpti s etc. d design ign of in sed in th	select iques of fail atings or sto is type drical angles ie to c rt, bea suppo on w of var ternal ne pro	tion, and lure. for ring es of and s for dead ring orts, hich ious coil
	eau	ipment tes	sting as a	designer			U				
	-	dents will	U	U		and ide	ntify des	sign prot	olems in	indus	trial
		ipment ba									
Iapping of cours		1			-						
	e objecti		a progra	in outco			0.0000				
Course	~	<u> </u>	_		U	am Outc		<u> </u>	<u>^</u>		<u> </u>
Outcomes	1	2	3	4	5	6	7	8	9	10	
1	√					✓				 ✓ 	
2	\checkmark	✓		\checkmark		\checkmark		✓	✓	✓	
		-		✓	✓	✓	✓	✓	✓	✓	
3	\checkmark	✓		v	v	v	v	v	v	~	

Bhattacharya B. C., "Chemical Equipment Design", CBS Publisher, (1985). 1.

2.

- Ulrich G. D., "A Guide to Chemical Engineering Process Design and Economics", John Wiley, (1984). Ludwig E. E., "Applied Process Design for Chemical and Petrochemical Plants, Vol. 1, 2 and 3", 3rd Edition, 3. Gulf Publishing Company, Houston, (1995).
- Perry's, "Handbook of Chemical Engineering", 7th Edition, McGraw Hill, (1997). 4.
- Sinnott R. K., "Coulson & Richardson's Chemical Engineering, Vol.6", 2nd Edition, Butterworth Heinemann, 5. Oxford, (1998).

Course Code	Course Title	L	Т	Р
CHPC-222	Chemical Technology Lab	0	0	3
Pre-requisites:	Basics knowledge of chemical process			
Course	To expose the students on how raw materials are converted into useful produ	icts.		
objectives:				
List of	1. To determine the acid value of a vegetable oil and lubricating oil			
Experiments:	2. To determine the saponification value of vegetable oil.			
	3. To standardize the given Fehling's solution.			
	4. To estimate the given reducing sugar.			
	5. To estimate the given non reducing sugar.			
	6. To analyze the given cement sample.			
	7. To determine the corrosion rate of a metal using electrochemical m	ethod		
	8. To determine the viscosity of a given sample by Redwood Apparate	18		
	9. To determine the molecular weight of the given polymer using Ost	wald		
	viscometer.			
	10. To determine adulterants in given food sample.			
	11. To synthesize urea fertilizer.			
	12. To determine the potential for electrodeposition of copper.			
Course	1. Acquire the knowledge to determine acid and saponification value of give	en oil	samp	le
Outcomes:	2. Able to understand the measurement of various properties like viscosity,		-	
	weight using viscometer			
	3. Acquire knowledge in analysis of cement and preparation of urea.			
	4. Ability to estimate the reducing and non reducing nature of sugar sample,	adult	eratio	n of
	food samples and corrosion rate of a metals.			

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	omes (PO))						
Course	Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1	\checkmark							\checkmark				
2								\checkmark				
3	\checkmark							\checkmark				
4	\checkmark											

1. Lab manuals

2. Dryden C E, "Outlines of Chemical Technology", East –West Press Pvt. Ltd., New Delhi, 2 nd Edition (1973)

Course Code		Course Title	L	Т	Р
CHPC-224		Heat Transfer Lab	0	0	3
Pre-requisites:		Knowledge of heat transfer.			
Course	This	s lab is designed to develop among the students the skills to perform experin	nents	related	to the
objectives:		lication of heat transfer concepts is conduction, convection and radiation.			
		ut operation of heat exchangers and evaporators. The students learn to recon	rd and	present	t their
	obse	ervations in reports.			
List of	1.	Determination of thermal conductivity of insulating powder.			
experiments:	2.	Determination of thermal conductivity of the given liquid.			
	3.	Determination of heat transfer coefficient by forced convection.			
	4.	Determination of heat transfer coefficient for pin fin by forced convection.			
	5.	Determination of heat transfer coefficient for pin fin by natural convection.			
	6.	Determination of emissivity of the given test plate.			
	7.	To conduct test on heat pipe and comparison of the temperature distribution	•		
	8.	Determination of heat transfer coefficient in shell & tube heat exchanger.			
	9.	Determination of overall heat transfer for parallel flow in double pipe heat e			
	10.	Determination of overall heat transfer coefficient for counter flow in doub	le pipe	e heat	
		exchanger			
	11.	Determination of overall heat transfer coefficient in an open pan evaporate	or		
	12.	Determination of heat transfer coefficient by drop wise and film wise conde	ensatic	n	
Course	1.	The students will exhibit the skills of handling equipment at laboratory sca	le and	co-rela	te the
Outcomes:		theoretical aspects by performing experiments related to heat transfer.			
	2.	The students will develop the hand experience for industry.			
	3.	Ability to understand, explain and select instrumental for heat transfer analy	sis		
	<i>3</i> . 4.	The students will develop the skill of presenting the results in form of writt		orts.	
			P		

Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	\checkmark										
2											
3											
4											

Recommended books: 1. J. P. Holman, "Heat Transfer", 9th Edition, Tata McGraw-Hill, New Delhi, (2004).

2. Lab Manual

Course Code	Course Title	L	Т	Р								
CHPC-301	Mass Transfer- I	3	1	0								
Pre-requisites:	None											
Course	To understand the principles of diffusion, gas absorption, drying and theo	ories c	of inter	phase								
objectives:	mass transfer. This basic knowledge will be useful to design various mass tra	ansfer	equipm	ents.								
Syllabus:	Diffusion Classification of mass transfer operation, choice of separation methods. Transfer: Steady state molecular diffusion in fluids at rest and in lamina diffusion in gases, molecular diffusion in liquids, diffusivity in liquids and	ar flo	w, mole	ecular								
	and heat transfer in laminar flow. Mass Transfer Coefficient	gases	s, mome	iituiii								
	local and overall mass transfer coefficient, heat and mass transfer analogy, eddy diffusivities, Im theory, penetration theory, surface renewal theories, combination film theory and surface tretch theory.											
	Inter phase Mass Transfer Equilibrium, local two phase mass transfer coefficients, Local overa coefficients, material balance for co current & counter current processes, cas of Ideal stage and stage efficiencies, continuous contact equipment's											
	Gas Absorption Choice of solvent, Estimation of number of ideal stages – Graphical and A Minimum solvent flow rate, Significance of absorption factor, number of height of a transfer unit (NTU & HTU) concepts, packed column for a absorption, height of column based on condition in gas film and liquid film overall coefficients, equipment for gas absorption.	f trans absorp	fer unit ption, ra	s and te of								
	Drying Equilibrium in drying, batch drying and rate of batch drying, time of circulations drying & continuous drying, batch & continuous drying equipme		ing, Th	rough								
Course	1. Ability to understand theprinciples of mass transport.											
Outcomes:	2. The students are able to comprehend the concepts of co current a processes, cascades and concept of Ideal stage and stage efficiencies, equipment's.											
	 Ability to perform calculations of number of transfer units and heigh (NTU & HTU) concepts, packed column for absorption, equipment for batch & continuous drying equipment's. 											
	4. Applying the concepts to mass transport to industrial flows.											
Mapping of cours	e objectives (CO) & program outcomes (PO)											
Course	Program Outcomes	r		1								
Outcomes		9	10	11								

Course					Progra	am Outc	omes				
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	\checkmark				\checkmark						
2											
3											
4											
4						\checkmark					v

Treybal R. E., "Mass Transfer Operations" 3rd Edition, McGraw Hill, (1980). 1.

Geankopolis C. J., "Transport Processes and Separation Process Principles", Prentice Hall of India, 4th Edition, Eastern Economy Edition, (2004). 2.

- Seader J. D., Ernest, J. Henley, "Separation process principles" 2nd Edition, Wiley, (2005). 3.
- McCabe W. L., Smith J. C. "Unit Operations of Chemical Engineering", McGraw Hill, (2001). Coulson J. M., Richardson J. F. "Chemical Engineering, Vol. 2", McGraw Hill, (1999). 4.
- 5.

Course Code	Course Title L T	Р						
CHPC-303	Chemical Reaction Engineering - I31	0						
Pre-requisites:	None							
Course Objectives:	The course aims to understand the basic concepts of chemical kinetics for different t							
	of reactions. Design of the reactors for homogeneous reactions such as batch, plug-							
	and mixed-flow reactors. To understand the effect of temperature and pressur							
	reaction kinetics. The students learn about the fluid-solid non-catalytic reactions	an						
	their reactor design. Introduction							
Syllabus:	Kinetics of homogeneous chemical and biochemical reactions, single and mul	ltinl						
Synabus.	reactions, order & molecularity, rate constant, elementary and non-elementary react							
	temperature dependent term of rate equation.							
	Interpretation of Batch Reactor Data							
	Constant volume batch reactor, integral method of analysis of data, series and par	ralle						
	reactions, reversible reactions, Variable volume batch reactor, Differential method							
	analysis, Temperature and reactions rate.							
	Introduction to Homogeneous Reactor Design							
	Ideal batch reactor, mixed flow reactor, plug flow reactor, holding and space time							
	design for single reactions, size comparison (analytical and graphical method, plug	flov						
	reactors in series & parallel, mixed reactor in series, recycle reactors.							
	Design for Multiple Reactions	сі.						
	Reactions in parallel and series in CSTR, reactions in parallel and series in Plug reactor, yield & selectivity.	flov						
	Temperature and Pressure Effects							
	General design procedure, optimum temperature progression, adiabatic operation, adiabatic operation.	no						
	Non Catalytic Fluid Solid Reactions							
	Kinetics and Mass transfer, Selection of model, PCM and SCM models, diffu	isio						
	through gas film control, diffusion through ash layer control, chemical reaction con							
	Reactor Design.							
Course Outcomes:	1. To understand the mechanism of chemical kinetics for different types of reactio	ns						
	2. To design batch and flow reactors for single homogeneous reactions							
	3. To understand the factors affecting the conversion, yield and selectivity in mult	iple						
	reactions							
	4. To understand solid-fluid non-catalytic reaction kinetics and design of reactors							

Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1														
2								\checkmark						
3														
4														

1. Levenspiel O., "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons, Singapore, (1999).

- 2. Fogler H. S., "Elements of Chemical Reaction Engineering", 3rd Edition, Prentice Hall Inc., (1999)
- 3. Smith J. M., "Chemical Engineering Kinetics", 3rd Edition, McGraw Hill, (1981).
- 4. Hill C. G., "Chemical Engineering Kinetics and Reactor Design", John Wiley, (1977).
- 5. Coulson J. M., Richardson J. F., "Chemical Engineering, Volume 3", Pergamon Press, (1999). Sons, NY, (1990).

Course Code	Course Title L T P										
CHPC-305	Process Engineering and Economics 3 1 0										
Pre-requisites:	None										
Course	The course aims at understanding the basics of accounting, cost-factors involved in process										
Objectives:	plant planning, concepts like interests, investments, taxes and insurance, depreciation,										
	profitability, optimum design of operations in chemical plants.										
Syllabus:	Cost and Asset Accounting										
	Assets and Equities, Balance sheet, Income statement, Debits and Credits, Cost accounting										
	methods.										
	Cost Estimation										
	Factors affecting investment & production costs, Capital investments (Fixed and working										
	capital), Types of capital cost estimates, Cost Indexes, Estimating equipment costs by scaling										
	6/10 Factor Rule, Purchase Equipment Installation, Insulation costs, Instrumentation &										
	Control, Piping, Electrical Installation, Service facilities, Land, Engineering & Supervision,										
	Start-up expenses. Methods of Estimating Capital Investment, Estimation of total product										
	cost, Different costs involved in the total product for a typical Chemical Process plant.										
	Interest and Investment Costs										
	Types of interest (simple & compound interest), Nominal & Effective Rates of interest, Continuous interest, Present worth & discounts, Annuities, perpetuities, capitalized costs,										
	Interest & Investment costs.										
	Taxes and Insurance										
	Types of taxes, Property taxes, excise taxes, income taxes, Types of Insurance & Lega										
	Responsibility.										
	Depreciation										
	Purpose of Depreciation as cost, Types of Depreciation, Depletion, Service life., Salvage										
	value, Present value, Methods of determining Depreciation, Straight-line method, Declining										
	Balance Method, Sum of the years Digits method, Sinking Fund Method, Single Unit &										
	Group Depreciation.										
	Profitability, Alternative Investments & Replacement										
	Profitability standards, Mathematical methods of profitability evaluation: Rate of return on										
	investment, Discounted cash flow method, Net Present worth, Capitalised costs, pay out										
	period. Determination of Acceptable investment, Alternatives when an investment must be										
	made, Alternative analysis by method of return on incremental investment, Alternative										
	analysis incorporating minimum return as a cost, Replacements.										
	Optimum Design										
	General procedure for Determining optimum conditions, Procedure with one variable,										
	Procedure with Two or More variables, Break even chart for production schedule and its										
~	significance.										
Course	1. To understand the contributing factors leading to cost-estimation of a process plant.										
Outcomes:	2. To understand concepts like interests, investments, taxes and insurance, depreciation,										
	profitability, and alternative investments.										
	3. To understand profitability concept and use for alternative investments.										
	4. To be able to optimally design the plant operation conditions.										

Mapping of cou	rse outcon	ness (CO)	& progr	am outc	omes (PO)							
Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1													
2											\checkmark		
3											\checkmark		
4											\checkmark		

1. Douglas, James M., Conceptual Design of Chemical Processes, McGraw-Hill International Editions (Chemical Engineering Series), New York, USA (1988).

2. Biegler, L.T., I.E. Grossmann and A.W. Westerberg, Systematic Methods of Chemical Process Design,

3. Prentice Hall (Pearson Education), New Jersey, USA (1997).

4. Peters, Max S., K.D. Timmerhaus and R.E. West, Plant Design and Economics for Chemical Engineers (5th Ed), McGraw-Hill International Editions (Chemical Engineering Series), New York, USA (2003).

5. Smith, R., Chemical Process: Design and Integration, John Wiley and Sons, WestSussex, UK (2005).

Course Code	Course Title L T P									
CHPC-307	Environmental Engineering 3 0 0									
Pre-requisites:	None									
Course objectives:	This course aims at developing the students the environmental impacts of air, water and									
-	solid pollution.									
	This course also aims to develop the basic knowledge about the biomedical, hazardous,									
	and waste management.									
Syllabus:	Air Pollution Control Engineering:									
	Introduction, Definition, Sources, Characteristics and Perspective of Air Pollutants,									
	Effects of Air Pollution on Biodiversity, Economic Effects of Air Pollution, Air Quality									
	and Emission Standards, Engineering Systems of Control of Air Pollution by Equipment									
	and by Process Changes.									
	Water Pollution Control Engineering:									
	Introduction, Definition, Sources, Characteristics and Perspective of Water and									
	Wastewater Pollutants, Effects of Water Pollution on Biodiversity, Economic Effects of									
	Water Pollution, Water Quality and Emission Standards, Physical, Chemical and									
	Biological Parameters, Engineering Systems of Control of Water and Wastewater									
	Pollution by Primary, Secondary and Advance Treatment.									
	Solid Waste Management:									
	Introduction, Definition, Sources, Characteristics and Perspective of Solid Waste,									
	Generation, Separation, Handling, Storage and Transportation of Solid Waste, Physical,									
	Chemical and Biological Treatment of Solid Waste.									
	Biomedical and Hazardous Waste Management: Introduction, Definition, Sources, Characteristics and Perspective of Biomedical and									
	Hazardous Waste, Handling, Storage, Transportation of Biomedical and Hazardous Waste,									
	Physical, Chemical and Biological Treatment of Biomedical and Hazardous Wastes.									
Course Outcomes:	1. The students are able to understand the impact of air, water and solid pollution effects									
Course Outcomes.	on the environment.									
	2. The students are able to design various engineering systems of control of air, water									
	and solid waste pollution by equipment and by process changes.									
	3. The students gain the knowledge of different standards for the measure and control of									
	air, water and solid waste pollution in the environment.									
	4. The students exhibit the skill to solve the problems related to the environmental									
	engineering.									

Mapping of course obj	jectives (C	CO) & pro	ogram ou	tcomes (PO)						
					Progra	m Outco	omes				
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2		\checkmark									\checkmark
3		\checkmark									
4											

Recommended Book

- 1. Rao M. N., Rao H. V. N., "Air Pollution", Tata McGraw Hill Publishing Company Ltd., (2005).
- 2. Peavy H. S., Rowe D. R., Tchobanoglous G., "Environmental Engineering", McGraw Hill Book Company, International Edition, (1985).
- 3. Metcalf and Eddy, Inc., "Wastewater Engineering-Treatment and Reuse", Tata McGraw Hill Publishing Company Ltd., Fourth Edition, (2004).
- 4. Rittmann B. E., McCarty P. L., "Environmental Biotechnology: Principles and Application", McGraw Hill International Editions, First Edition, (2001).
- 5. Kiely G., "Environmental Engineering", Tata McGraw Hill Publishing Company Ltd, Special Indian Edition, (2007).

Course Code	Course Title	L	Т	Р							
CHPC-321	Environmental Engineering Lab	0	0	2							
Pre-requisites:	Basic knowledge of environmental science and technology.										
Course objectives:	This particular laboratory will give students, the practical knowledge of p	olluti	on coi	ıtrol							
Ū	measures by performing the experiments in the laboratory.										
List of Experiments:	1. To determine the pH of a water sample.										
-	2. To determine the total solids (TS) of a given sample.										
	3. To find out total dissolved solids (TDS) of a given sample.										
	4. To find out total fixed solid (TFS) and total volatile solids (TVS) of the	giver	samp	le.							
	5. To determine the acidity of the given sample.										
	6. To determine the alkalinity of the given sample.										
	7. To determine the total hardness of the given sample.										
	8. To find out amount of sulfates in a given sample.										
	9. To estimate the content of chlorides in the given water sample										
	10. To find the quantity of the dissolved oxygen (DO) present in the given s										
	11. To determine the biochemical oxygen demand BOD of a given wastewa										
	12. To determine the chemical oxygen demand COD of a given wastewater sample.										
	13. Determination of dye concentration using UV-VIS spectrometer.										
	14. Determination of Cr ions concentration in the water sample using double UV-VIS spectrometer.										
	15. Determination of particulate matter (PM) from air sample.										
Course Outcomes:	1. Students will develop the skills to co-relate the theoretical aspects experiments.	by p	erforr	ning							
	2. Students can able to determining various properties contributing tow quality such as acidity, alkalinity, hardness, dissolved oxygen (DC oxygen demand (BOD) and chemical oxygen demand(COD) preser sample.), bi	ochen	nical							
	3. Students will be able to distinguish between the poor and good sustaining elements (water, air and soil).	quali	ty of	life							
	4. The students will develop the skill of presenting the results in form of w	ritten	repor	ts.							

Course					Progr	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	✓	✓		✓	✓	✓	✓				✓
2	✓	✓	✓				✓	✓			✓
3			✓			✓	✓	✓			
4	✓							✓	✓	✓	✓

- 1. Lab manuals
- 2. Guide Manual: Water and Waste Water Analysis, Central Pollution Control Board, A Government of India Organization.

Course Code	Course Title	L	Т	Р
CHPC-323	Energy Technology Lab	0	0	2
Pre-requisites:	Basic knowledge on conventional fuels			
Course	The students will get the practical exposure of calculating different prope	erties li	ike sn	ioke
objectives:	point, flash point, cloud point, pour point, and melting point of the variou	s fuels	. Stud	ents
	can also able characterise the solid fuels based on proximate analysis.			
List of	1. To determine the fire and flash point, of a given sample			
Experiments:	2. To determine the Smoke Point of a given sample			
	3. To study the Distillation of Petroleum Products			
	4. To determine the calorific value of a fuel using Peroxide Bomb Calor	rimeter	•	
	5. To determine the Cloud Point and Pour Point of a given sample			
	6. To determine the Melting Point of Petroleum wax			
	7. To determine the moisture content and Volatile Matter of given solid	fuel sa	ample	
	8. To determine the Ash content and fixed carbon and calculate higher	neating	g value	;
	from proximate analysis of given solid fuel sample.			
	9. To analyze the dry exhaust gas from a combustion system using the	Drsat a	ppara	us.
	10. To determine the carbon residue using Carbon Residue Apparatus.			
	11. To determine the Aniline point of liquid fuels.			
	12. To determine the characteristics of carbonization process with given			
	13. To determine the characteristics of hydrothermal liquefaction process	s with g	given	
	samples.			
	14. To determine the burning properties of different fuels.			
Course	1. The students will able to measure various properties of fuels like flas	h , fire	,smol	ce,
Outcomes:	melting, aniline, cloud and pour point			
	2. Able to understand the importance of proximate analysis for solid fue	els		
	3. Able to gain knowledge on the application of distillation process			
	4. Able to analyze the flue gases and determine carbon residue			

Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1								\checkmark			
2											
3											
4	\checkmark										

- Gupta O. P., "Elements of Fuels, Furnaces and Refractories", Khanna Publishers
 Lab manuals

Course Code	Course Title	L	Т	Р
CHPC-302	Mass Transfer - II	3	1	0
Pre-requisites:	None			
Course	To understand the principles of mass transfer operations such as distil	lation,	extrac	ction,
objectives:	leaching, adsorption which has high relevance to industrial applications. Thi will be useful to design various mass transfer equipment's.	s basic	know	ledge
Syllabus:	Distillation			
	Mass Transfer equilibria for vapour-liquid, liquid-liquid, solid-liquid and Raoult's Law and Dalton's law, partial vaporisation and partial cond volatility, differential distillation & flash distillation, steam distillation, McCabe–Thiele methods & numerical, Ponchon-Savarit method, Underv equations, total reflux, minimum and optimum reflux ratios, multiple feeds Azeotropic and Extractive distillation.	ensatio Lewis vood	on, rel s Sorel and Fe	ative and enske
	Liquid-Liquid Extraction			
	Ternary phase diagrams & choice of solvent, single stage and multistage current and counter current extraction operation for immiscible and miscibl numerical problems, continuous contact extractors			
	Leaching			
	Mass transfer in leaching, equipment for leaching, single stage and multist co-current and counter current leaching operations, related numerical problem		oss cu	rrent,
	Adsorption			
	Introduction and the nature of adsorbent, adsorption equilibria, the Langmu isotherm and Gibbs isotherm, potential theory and adsorption equipment	iir iso	therm,	BET
	Crystallization Formation of nuclei, nuclei growth and properties of crystals, effect of imp formation, effect of temperature on solubility, caking of crystals, yield of cry related numerical problems.			
Course	1. Ability to understand the basic principles of distillation, methods and typ	es of d	listillat	ion
Outcomes:	 The students will be able to apply McCabe Thiele method for determination stages in a distillation column. The students will be able to calculate percentage recovery of solute and in for liquid –liquid extraction operation. 	on of n umber	umber of stag	of
	4. Ability to perform calculations of HETP and NTU for the adsorption equ	ipmen	ts.	

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	omes (PO))					
Course		Program Outcomes									
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	\checkmark										\checkmark
2								\checkmark			\checkmark
3	\checkmark							\checkmark			\checkmark
4											

 Treybal R. E., "Mass Transfer Operations" 3rd Edition, McGraw Hill, (1980).
 Geankopolis C. J., "Transport Processes and Separation Process Principles", Prentice Hall of India, 4th Edition, Scalardopolis C. S., Transport Processes and Separation Process Principles', Produce Plan of a Eastern Economy Edition, (2004).
 Seader J. D., Ernest, J. Henley, "Separation process principles" 2nd Edition, Wiley, (2005).
 McCabe W. L., Smith J. C. "Unit Operations of Chemical Engineering", McGraw Hill, (2001).
 Coulson J. M., Richardson J. F. "Chemical Engineering, Vol. 2", McGraw Hill, (1999)

Course Code	Course Title L T P									
CHPC-304	Chemical Reaction Engineering - II310									
Pre-requisites:	None									
Course Objectives:	The course aims to understand the non-ideal flow patterns in reactors, physical									
	properties of solid catalysts, catalytic and non-catalytic heterogeneous systems, effect of									
	external and internal transporton reaction rates and kinetic regimes for fluid-fluid									
	reactions									
Gullahua	Non Ideal Flow									
Syllabus:	Non-ideal flow patterns, E, F & C Curve, Mean residence time, Models for non-ideal flow, N Tanks in series model, conversion in a reactor using RTD data.									
	Heterogeneous Processes									
	Global rates of reaction, Types of Heterogeneous reactions, Catalysis, The nature of									
	catalytic reactions, Mechanism of catalytic reactions. Physical Adsorption and									
	Chemisorption, Adsorption isotherms, Rates of adsorption isotherm.									
	Solid Catalysts									
	Determination of surface area, Void volume and solid density, Pore volume distribution,									
	Theories of heterogeneous catalysis, Classification of catalysts, catalyst preparation,									
	Promoter and inhibitors, Catalysts Deactivation									
	Rate Equations for Fluid solid catalytic reactions									
	Rates of Adsorption, Surface reaction, Desorption, Rate limiting step, Power Law,									
	Langmuir Hinshelwood rate, Eley-Rideal mechanism, Packed bed reactor and fluidized									
	bed reactor, Numerical Problems									
	Intra Pellet Mass Transfer									
	Gaseous diffusion in single cylindrical pore, Different modes of diffusion: Bulk									
	diffusion, Knudsen diffusion and surface diffusion, Diffusion in Liquids, Diffusion in									
	Porous Catalyst, Concepts of effective thermal conductivity and effective diffusivity, Effectiveness factors									
	Reactors									
	Types of Packed-Bed, Fluidized-Bed, Slurry and Trickle-Bed Catalytic Reactors, Effect									
	of external mass and heat transfer processes, Global reaction rates									
	Introduction to Fluid-Fluid Reactions									
	Kinetic Regimes for Mass Transfer and Reaction, Film Conversion parameter, Clues to									
	the kinetic Regime from solubility data, Clues to the Kinetic Regime from equipment,									
	Applications to design									
Course Outcomes:	1. To understand and analyze the non- ideal flow behavior in reactors									
	2. To understand and analyze the external and internal transport in catalytic									
	reactionsystems									
	3. To understand physical properties and preparation of solid catalysts.									
	4. To understand and analyze kinetic regimes in Fluid-Fluid reactions and reactor									
	design									

Mapping of cou	rse outcon	nes (CO) d	& progra	m outco	mes (PO)						
Course		Program Outcomes									
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											

- Levenspiel O., "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons, Singapore, (1999). 1.
- Fogler H. S., "Elements of Chemical Reaction Engineering", 3rd Edition, Prentice Hall Inc., (1999) Smith J. M., "Chemical Engineering Kinetics", 3rd Edition, McGraw Hill, (1981). 2.
- 3.
- Hill C. G., "Chemical Engineering Kinetics and Reactor Design", John Wiley, (1977). 4.
- Froment, G.F. and Bischoff, K. B., "Chemical Reactor Analysis and Design", 2nd Edition, John Wiley and 5. Sons, NY, (1990).

Course Code	Course Title	L	Т	Р						
CHPC-306	Process Dynamics and Control	3	1	0						
Pre-requisites:	Basic knowledge of mathematics, mass and energy Balance									
Course	The course aims to analyse of the response of chemical process systems									
objectives:	diagram and the stability of the process. The students will be able to ana	•	•							
	behaviour of first and second order processes and various controllers	used in	chen	nical						
	process industries.									
Syllabus:	Modeling Tools for Process Dynamics									
	Process Dynamics of Chemical Process, Mathematical Tools for Modelin									
	Simple Function, Transforms of Derivative, Initial Value Theorem	and Fi	nal V	alue						
	Theorem, Transform of Integral.									
	First Order Systems									
	Mercury Thermometer & Its Transfer Function, Transient Response, Fo									
	Liquid Level System, Liquid Level Process with Constant Flow Outlet,									
	Linearization, Response of First Order System in Series: Non-Interactin	g and 1	Intera	cting						
	Systems.									
	Higher Order Systems and Transportation Lag									
	Transfer Function of Second Order System, Response of Second Order S	ystem	to For	cing						
	Functions Namely Step, Impulse and Sinusoidal. Transportation Lag.									
	Controllers and Final Control Elements									
	Mechanisms of Control Valve, Proportional Controller, Integral & Derivative Controller.									
	Control System									
	Components of a Control System: Process, Measuring Element, Controller and Final									
	Control Element, Development of Block Diagram.									
	Transient Response of Simple Control System									
	Proportional Control for Set Point Change, Proportional Control for									
	Proportional Integral Control for Load Change, Proportional Integral Con	trol for	r Set I	Poin						
	Change, Proportional Control System With Measurement Lag									
	Stability of the System									
	Concept of Stability, Stability Criteria, Routh Test for Stability. Introduct									
	Response: Bode Diagram for First Order, Bode Diagram for Proportion									
	Derivative Control, Second Order System. Control System Design									
	Response: Bode Stability Criteria, Gain and Phase Margin, Ziegler N	ichols	Contr	ollei						
	Settings.									
	Introduction to Advanced Control									
	Feed Forward Control, Cascade Control, Dead Time Compensation, Control	oller T	uning							
Course	1. To understand the chemical process in terms of block diagram									
Outcomes:	2. The students will able to understand the effect of various forcing fund	ction of	n first	and						
	higher order systems.									
	3. The students will able to understand the transient response of various	contro	llers.							
	4. The students can identified the stability of control systems and be ab	e to de	sign tl	he						
	control system for chemical and allied industries.									

Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	✓					✓	✓	✓			
2		✓		✓		✓	✓	✓			
3		✓		✓				✓			
4	✓			✓				✓			

- 1. Coughanower D. R., "Process System Analysis and Control", 2nd Edition, McGraw Hill. (1991).
- 2. Seborg, E., Mellichamp, "Process Dynamics & Control", 2nd Edition, John Wiley, (2004).
- 3. Stephanopoulos, "Chemical Process Control-An Introduction To Theory & Practice",1st Edition, Prentice Hall Inc.
- 4.
- Eckman D. P., "Industrial Instrumentation", Wiley Eastern Ltd., (1975). Kerk F. W., Rimboi W., Tarapore R., "Instrumentation", Wiley and Sons, (1983). 5.

Course Code	Course Title	L	T	Р
CHPC-322	Mass Transfer Lab	0	0	3
Pre-requisites:	Basic knowledge of mass transfer operations			
Course	The course aims that thestudents will get the experimental exposure of diffe			
objectives:	operations such as diffusion, extraction, drying, etc. In addition, the students l	earn to	o record	1 an
	present the observations made through experiments.			
List of	1. To plot the ternary phase diagram for acetic-acid–water Toluene.			
experiments:	2. To draw the tie line and to determine plait point for ternary system.			
	3. To determine the diffusivity of acetone in air.			
	4. To study the drying characteristics of the given wet material (Natural C			
	5. To determine the Mass Transfer Coefficient for vaporization of naphth	alene i	n air	
	6. To verify Rayleigh's Equation for Batch distillation.			
	7. To find HETP and HTU for packed distillation column.			
	8. To purify turpentine oil having high boiling point using steam distillati			
	9. To determine VLE data for methanol-water and to compare it with lite			
	10. 10. To determine the mass transfer coefficient by carrying out liquid-	liquid	extracti	on i
	a packed column using acetic acid- toluene-water system. 11. To study the drying characteristics of the given wet material (forced co		an)	
	12. To study the process of crystallization in an agitated batch crystallizer			Tron
	between weight of crystals vs. temperature.	and to	plot a g	grap
	13. To find out mass transfer coefficient in a drop wise liquid–liquid extra	ation		
	14. To Study the Heat and Mass Balance in Cooling Tower.	cuon.		
	14. To study the fleat and wass balance in Cooling Tower.			
Course	1. The students will develop the skills to handle the equipment's at laborate			
Outcomes:	 Ability to co-relate the theoretical aspects by performing experiments a transfer operations. 	related	to mas	s
	3. The knowledge related to distillation column, liquid-liquid extraction i			
	column, agitated batch crystallize, liquid-liquid extraction and heat and	1 mass	balanc	e in
	cooling tower can lead to design of the experiments.			
	4. Ability to understand and analyze the applications to industrial flows.			
anning of cours	e objectives (CO) & program outcomes (PO)			
	Program Outcomes			

Course		Program Outcomes									
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											

Recommended books:
1. Treybal R. E., "Mass Transfer Operations" 3rd Edition, McGraw Hill, (1980).

2. Lab manuals

Course Code	Course Title L T	Р
CHPC-324	Reaction Engineering and Thermodynamics Lab 0 0	3
Pre-requisites:	Knowledge of chemical reaction engineering and thermodynamics	
Course Objectives:	The course aims at performing the experiments, estimation of reaction kinetics, porosity	y
Ū	and sphericity of catalyst, residence time distribution, and validation of adsorption	n
	isotherms.	
List of Experiments:	1. Determination of rate constant for saponification reaction in a batch reactor.	
	2. Determination of rate constant for saponification reaction in a plug-flow reactor.	
	3. Determination of porosity and sphericity of the given catalyst.	
	4. RTD study in a packed bed reactor.	
	5. To study the adsorption of acetic acid on charcoal and prove the validity o	of
	Freundlich and Langmuir adsorption isotherm.	
	6. To study the adsorption of oxalic acid on charcoal and prove the validity o	of
	Freundlich and Langmuir adsorption isotherm.	
	7. To analyse the effect of temperature on rate constant in a batch reactor	
	8. To study the kinetics for dissolution of benzoic acid in water	
	9. To determine the rate constant for hydrolysis of ethyl acetate using hydrochlorid	С
	acid as a catalyst	
	10. To study the kinetics of methanol oxidation in a methanol-based fuel cell.	
	11. To study the kinetics of water splitting in a photo-electrochemical cell.	
	12. To determine VLE data for methanol–water and to compare it with literature data.	
	13. To find the dryness fraction of steam using calorimeter	
	14. To study the effect of molar ratio on rate kinetics for a second order reaction in a	a
	batch reactor	
Course Outcomes:	1. Ability to understand and analyze the rate kinetics for the given reaction	
	2. Ability to analyze the properties of solid catalyst particles	
	3. To analyze the residence time distribution curve in a packed-bed reactor	
	4.To experimentally verify the adsorption isotherms	
	5. To study the reaction kinetics in a fuel cell and a photo-electrochemical cell.	

Mapping of cou	rse outcom	es(CO) &	k progra	m outcor	nes (PO)						
Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1		√	✓	✓				✓			
2		~	✓	~				✓			
3	✓	✓	✓	✓				✓			
4		√	✓	✓				✓			

Recommended books:
1. Levenspiel O., "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons, Singapore, (1999).
2. Lab manuals

Course Code	Course TitleLTPTransmost Phonemann210
CHPC-401	Transport Phenomena 3 1 0
Pre-requisites:	Knowledge of fluid mechanics, heat transfer, mass transfer and engineering mathematics.
Course	Transport phenomena is the subject which deals with the different transport processes such a momentum, energy and mass, ubiquitous in industry as well as in nature. Momentum, heat and
objectives:	mass transfer are taught together due to the underlying similarities of the mathematics tool
	and molecular mechanisms describing such processes. The students will be made aware of the
	core scientific connections and will be encouraged to solve problems based on relevan
	analogies.
Syllabus:	Momentum transport
U	Viscosity and the mechanism of momentum transport, Newton's law of viscosity, non
	Newtonian fluids, pressure and temperature dependence of viscosity, theory of viscosity of
	gases at low density, theory of viscosity of liquids.
	Velocity distributions in laminar Flow
	Shell momentum balances: boundary conditions, flow of a falling film, flow through a circula
	tube, flow through an annulus, adjacent flow of two immiscible fluids.
	The Equations of change for isothermal systems
	To equation of continuity, the equation of motion, the equation of mechanical energy.
	Thermal conductivity and the mechanism of energy transport
	Fourier's Law of heat conduction, temperature and pressure dependence of thermal
	conductivity in gases and liquids, theory of thermal conductivity of gases at low density, theor of thermal conductivity of liquids, thermal conductivity of solids.
	Temperature distributions in solids and in laminar flow
	Shell energy balances; boundary conditions, heat conduction with an electrical heat source
	heat conduction with a chemical heat source, heat conduction through composite walls
	Addition of Resistance, Forced Convection, Free Convection.
	The Equations of change for non-isothermal systems
	The equations of energy, the energy equation in curvilinear coordinates, the equations of
	motion for forced and free convection in nonisothermal flow, summary of the equations o
	change, use of equation of change to set up steady-state heat transfer problems.
	Diffusivity and the mechanism of mass transport
	Definition of concentrations, velocities and mass fluxes, fick's law of diffusion, theory of
	ordinary diffusion in gases at low density, theory of ordinary diffusion in liquids.
	Concentration distributions in solid and in laminar flow
	Shell mass balances: boundary conditions, diffusion through a stagnant gas film, diffusion
	with heterogeneous chemical reaction, diffusion with homogeneous chemical reaction
	diffusion into a falling liquid film l forced–convection mass transfer, Analogies between Hear mass and momentum and transfers.
	1. Understanding of transport processes.
Course	I CHRIGANIANUN VEHAUNUUL DI UCENNEN
Course Outcomes:	
Course Outcomes:	2. Ability to do heat, mass and momentum transfer analysis.
	 Ability to do heat, mass and momentum transfer analysis. Ability to analyze industrial problems along with appropriate boundary conditions.
Outcomes:	 Ability to do heat, mass and momentum transfer analysis. Ability to analyze industrial problems along with appropriate boundary conditions. Ability to develop steady and time dependent solutions along with their limitations.
Outcomes:	 Ability to do heat, mass and momentum transfer analysis. Ability to analyze industrial problems along with appropriate boundary conditions.

11 0	<u> </u>	· · ·	1 0								
Course					Progra	am Outc	omes				
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											\checkmark
3						\checkmark					
4											

- R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, 'Transport Phenomena', 2nd Edition., John Wiley & Sons, (2002).
- 2. Christie John Geankoplis, "Transport Processes and Separation Process Principles", 4th Edition, PHI Learning Private Limited., (2013).
- 3. K. S. Gandhi, "Heat and Mass Transfer A Transport Phenomena Approach" New age international (P) Limited (2012).
- 4. J. R. Welty, R. E. Wilson, C. E. Wicks, "Fundamentals of Momentum, Heat and Mass Transfer", 4th Edition, John Wiley and Sons (2001).
- 5. W. J. Thomson, "Introduction to Transport Phenomena", Pearson Education Asia, (2001).

Course Code	Course Title L T P									
CHPC-403	Industrial Safety and Hazards Management300									
Pre-requisites:	Transport Phenomena, Mechanical Unit Operation, Process Control									
Course	The objective of the course is to impart knowledge to the students about source of									
objectives:	hazards and control techniques. The course briefs the basics of fire, explosion and toxic									
	dispersion modeling.									
Syllabus:	Introduction									
	Concept of Loss Prevention, Acceptable Risks, Accident And Loss Statistics, Nature of									
	Accident Process, Inherent Safety.									
	Toxicology									
	Dose Vs. Response, Toxicants Entry Route, Models for Dose And Response Curves,									
	TLV and PEL									
	Industrial Hygiene									
	Identification, Material Safety Data Sheets, Industrial Hygiene Evaluation, and Control									
	Basics of Fires and Explosion									
	Fire Triangle, Flammability Characteristics of Liquid and Vapors, LOC and Inerting,									
	Types of Explosions, Designs for Fire Prevention and Control									
	Hazard Identification									
	Hazard Survey, Checklist, HAZOP, Safety Reviews, Reliefs and Relief Sizing									
	Risk Assessment									
	Probability Theory, Event Tree, Fault Tree, QRA and LOPA, Dow's Fire and Explosion									
	Index, Mond Index, Dow's Chemical Release Model									
	Accident Investigations and Case Histories									
	Bhopal Gas Tragedy, Flixborough Disaster, Fukushima Daiichi Explosion, IOCL Jaipur Fire									
Course										
Outcomes:	1. The students are able to understand the concept of loss prevention in Chemical Process Industries, hazard models such as pool fire, fireball, toxic dispersion etc.									
Outcomes:	 Able to calculate the accident and loss statics for the real plant units. 									
	 Able to calculate the accident and loss statics for the real plant units. The students learn to exhibit the skill of performing risk assessment such as 									
	conducting Dow's fire and Explosion index for the real plant units.									
	 Able to design the fire prevention and control systems. 									
	4. Abie to design the file prevention and control systems.									

Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	✓					✓					√
2	✓	✓				✓					✓
3		✓		✓		✓					√
4		✓				✓					√

Crowl D. A., Louvar J. F., "Chemical Process Safety Fundamentals with applications", 2nd Edition, 1. Prentice Hall, NJ (2002),

Coulson J. M., Richardson J. F., "Chemical Engineering", 2nd Edition, Vol. 6, Pergamon Press (1999). Lees F. P., Loss Prevention in Process Industries, 2nd Edition, Butterworth, London, (1996). 2.

3.

4. Dow's Chemical Exposure Index Guide, Dow Chemical Company, New York, (1993).

Wells G. L, Safety in Process Plant Design, George Godwin Ltd., New York, (1980). 5.

Course Coo	le Course Title	L	Т	Р							
CHPC-40		1	1	0							
Pre-requisit	es: Basic knowledge of Fluid flow, heat transfer and engineering mathematics.										
Course	The course objective is to give knowledge to the students about design of various equipment's like										
objectives:	heat exchangers, distillation columns, packed towers and other process equipment's. It also helps										
	the students in design and construction of the newly designed plants										
Syllabus:	Introduction										
	Basic considerations in chemical engineering plant design, optimization and feasibility of plant										
	design.										
	Process Design Aspects										
	Selection of process-factors affecting process selection. Types of project design, Importance of										
	Laboratory development pilot plant, safety factors, types of flow diagrams. Selection of Process Equipment's										
	Standard versus special equipment-material of construction for process equipment's, selection										
	criteria, and specification sheets.										
	Heat Exchanger Design										
	Classification of shell and tube heat exchanger, material of construction, cleaning of heat										
	exchangers, heat transfer fluid, agitated vessels, description of shell, tubes, bonnet and channel,										
	pass partition plate, nozzle, baffles, tie rods, baffle spacers, flanges, gaskets and expansion joints.										
	Design of heat exchangers: Energy balance, heat duty consideration and process design of double										
	pipe and shell and tube heat exchangers.										
	Mass Transfer Equipment's										
	Types of mass transfer equipment, packed and tray type towers. Tray Hydraulics : Bubble cap										
	columns, perforated plate columns and packed towers. Process Design : Process design of tray										
	and packed towers.										
Course	1. The students are able to handle the design of various typical chemical based	equip	ment's	s like							
Outcomes:	heat exchangers, distillation columns etc.										
	2. The students would also able to make plant layout of the newly developed p	ants	and pr	epare							
	written reports of design problems.										
	3. Ability to understand, explain chemical process plant.										
	4. The students will develop the skill of presenting the data in correct form.										
	* * *										

Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	\checkmark										
2			\checkmark								
3											
4											

1. D. Q. Kern, "Process Heat Transfer", McGraw Hill, (2001).

- 2. E. E. Ludwig, "Applied Process Design for Chemical and Petrochemical Plants", Vol. 1, 2 and 3, 3rd Edition, Gulf Publishing Company, (1995).
- 3. J. M. Coulson, R. E. Richardson, "Chemical Engineering" Vol. 2 and 6, Pergamon Press, (1998).
- 4. M. Van Winkle, "Distillation", 1st Edition, McGraw Hill Company, New York, (1967).
- 5. Robert H Perry's, "Handbook of Chemical Engineering" McGraw Hill, 7th Edition, (1997).

Course Code	Course Title	L	Т	Р						
CHPC-421	Process Control Lab	0	0	3						
Pre-requisites:	None									
Course	The students will get the experimental exposure of chemical processes	like	mer	cury						
objectives:	thermometer, liquid level tank, non-interacting and interacting tanks, controllers									
	their analysis.									
List of	1. Determination of first order response of the given mercury thermometer	r								
experiments:	2. Determination of time constant of U tube manometer									
	3. Determination of first order response in a liquid level tank									
	4. Determination of time constant in a non-interacting tank									
	5. Determination of time constant in a interacting tank									
	6. To study the ON/OFF characteristics of Control valve									
	7. To study the Linear characteristics of Control valve									
	8. To study the Equal Percentage characteristics of Control valve									
	9. To study the P,PI,PID controller with liquid level control trainer									
	10. To study the P,PI,PID controller with temperature control trainer									
Course	1. The students will develop the skills to handle the equipments at laborator	ry sca	ıle.							
Outcomes:	2. Able to co-relate the theoretical aspects by performing experiments of pr	ocess	s cont	rol						
	i.e. liquid level tank and control valve characteristics.									
	3. Experimental exposure to the first and second order process systems.									

Mapping of cou	ırse objecti	ves (CO)	& progr	am outco	omes (PO)							
Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1	✓		✓					✓			✓		
2	✓	✓	✓	✓				✓			✓		
3	✓		✓					✓			✓		

Recommended books:
1. Coughanower D. R., "Process System Analysis and Control", 2nd Edition, McGraw Hill. (1991).
2. Lab manuals

Course Co	de Course Title	L	Т	Р
CHPC-42	Chemical Engineering Computing Lab	0	0	3
Pre-requisit				
Course	This course has been designed to develop the understanding the computational n	nethod	s to sol	ve the
objectives:	problems related to the chemical engineering applications. The students are expos	ed to le	earn the	basic
-	principles, and logical skills in solving the problems using computational methods.			
Syllabus:	1. Estimation of Molar Volume and Compressibility Factor from Van Der Waals.			
	2. Estimation of Molar Volume and Compressibility Factor from Redlich-Kwong			
	3. Fitting Polynomials and Correlation Equations to Vapor Pressure Data.			
	4. Fitting Parameters in the Monod Equation for a Batch Culture.			
	5. Estimation of Vapor Pressure Correlation by Clapeyron and Antoine Equations	•		
	6. Gas Volume Calculations Using Various Equations of State.			
	7. Estimation of specific volume of a non-ideal gas following Van der Waals equa	ation b	у	
	solving non-linear equation using Newton Raphson Method.			
	8. Bubble Point Calculation for an Ideal Binary Mixture.			
	9. Dew Point Calculation for an Ideal Binary Mixture.			
	10. Estimation of Adiabatic Flame Temperature in Combustion.			
	11. Estimation of Antoine Equation Parameters Using Nonlinear Regression.			
	12. Calculations involving Flash Evaporation of an Ideal Multicomponent Mixture			
	13. Solution of simultaneous material balance equations using Gauss Jordan elimin	nation	method	••
	14. To study the transient behaviour of Continuous stirred tank reactor.			
	15. Numerical integration over batch reactor to find time using Simpson's rule/ tra			
Course	1. The students would be well versed with the principles of computing methods	with th	e theor	У
Outcomes:	involved in the solving the chemical engineering problems.			
	2. The students would be able to independently solve the problems in the chemic	al eng	ineering	g and
	would be aware about its applications.			
	3. Able to convert any chemical engineering problems in mathematical forms.			
	4. Ability to understand and solve the numerically chemical engineering problem	ıs.		

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	omes (PO)					
Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1					\checkmark						
2							\checkmark				\checkmark
3											
4			\checkmark					\checkmark			

- 1. S. K. Gupta," Numerical Methods for Engineers", Wiley Eastern, (1995).
- 2. P. Abuja, "Introduction to Numerical methods for chemical engineering", PHI learning Pvt, (2006).
- 3. S. C. Chapra, R.P. Canale, "Numerical Methods for Engineers", 5th Edition; McGraw Hill(2006).
- 4. A. Gourdin, M Boumhrat; "Applied Numerical Methods" Prentice Hall India, (2000).
- 5. .G. M. Philips, P. J. Taylor, "Theory and Applications of Numerical Analysis",2nd Edition., Academic Press (1996).

Course Code	Course Title L T P									
CHPC-402	Modeling and Simulation 3 0 0									
Pre-requisites:	Knowledge of Chemical Process Calculations, Heat Transfer, Mass Transfer, Chemical									
-	Reaction Engineering									
Course Objectives:	The course aims at developing the ability of students in mathematical treatment of									
	chemical engineering processes. The objective is to understand the basic concepts of									
	process modeling and simulation. Starting from formulation of the model, the course									
	presents several processes from chemical engineering, where simulation approaches and									
	mathematical tools are discussed.									
	Introduction									
Syllabus:	Definition of mathematical model, lumped parameter models, distributed parameter									
	models, uses of mathematical models, scope of coverage, principles of formulation.									
	Fundamental laws									
	Continuity equations, energy equations, equation of motion, equations of state,									
	equilibrium, chemical kinetics									
	Mathematical Models for Chemical Engineering Systems									
	Series of isothermal constant holdup CSTRs, CSTRs with variable holdups, Two heated									
	tanks, Non-isothermal CSTR, Single component vaporizer, Batch reactor, Ideal binary									
	distillation column, Batch distillation with holdup, pH systems, Lumped parameter model									
	of gas absorber, Model for heat exchanger, Model for interacting & non-interacting tanks,									
	Model for biochemical reaction.									
	Simulation									
	Approach and common numerical methods, simulation examples of isothermal CSTR,									
<u>C</u>	non-isothermal CSTR, Batch reactor									
Course Outcomes:	1. The student would understand the basic concepts of process model formulation,									
	analysis of variables, parameter estimation and simulation with mathematical									
	techniques 2. The student would understand the basic laws of chemical engineering and their									
	mathematical treatment, leading to model development.The student would get familiar with common mathematical and computational tools									
	for simulation of different chemical engineering processes									

Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1				\checkmark						\checkmark	\checkmark
2											
3											

1. Luyben W. L., "Process Modeling Simulation and Control for Chemical Engineers", International Edition, McGraw Hill, (1990).

2. Rose L. M., "The Application of Mathematical Modelling to Process Development and Design", First Edition Applied Science Publisher Limited, London, (1974).

3. Bequette, "Process Dynamics- Modelling, Analysis and Simulation", PHI International, (2003).

4. Rase H. F., "Chemical Reactor Design for Process Plants, Vol II: Case Studies and Design Data", 1st Edition, John Wiley and Sons, New York, (1997).

5. Morton D. M., "Process Modelling", First Edition, Longman Publisher, (1986).

Course Code	Course Title L T P
CHPC-422	Modeling and simulation Lab 0 0 3
Pre-requisites:	Fluid mechanics, Heat Transfer, Mass Transfer and Chemical Reaction Engineering
Course	This course aims at developing amongst the students the simulation techniques for solving
objectives:	mathematical models of chemical engineering processes by means of computer programming.
-	These models are reduced into set of equations solvable by numerical methods and then solved
	with the help of software packages.
List of	1. Modeling and Simulation of Isothermal CSTR
experiments	2. Modeling and Simulation of non-isothermal CSTR
	3. Modeling and Simulation of isothermal batch reactor
	4. Modeling and Simulation of non-isothermal batch reactor
	5. Modeling and Simulation of distillation column
	6. Modeling and Simulation of heat exchanger
	7. Modeling and Simulation of cyclone separator
	8. Modeling and Simulation of CSTRs in series
	9. Simulation of pipe flow problem
	10. Simulation of heat transfer in metal pipe/blocks for various types of boundary conditions.
	11. Simulation of settling of solid particle in fluid.
	12. Generation of velocity profile and shear stress profile for various fluids under laminar
	conditions.
	13. Simulation of 2-dimensional heat transfer in metal block.
	14. Simulation of drying behaviour of wet solid.
Course	1. The student is able to incorporate his entire knowledge of chemical engineering principles
Outcomes:	to an industrial or academic problem.
	2. The students to show their abilities to exhibit experimental, analytical and
	communication skills and make a record of the findings in the form of a report or thesis.
	3. The knowledge from this course can lead to design of the equipments.
	4. Ability to design unit processes which can yield best results.

Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1													
2													
3													
4													

Recommended books:
1. Luyben W. L., "Process Modeling Simulation and Control for Chemical Engineers", International Edition, McGraw Hill, (1990).
2. Lab manuals

DEPARMENTAL ELECTIVES

Curse Code		L	T	P						
CHPE-351	Computational Fluid Dynamics	3	0	0						
Pre-requisite										
Course	This course aims to develop an understanding of complex energy, mass and momen									
objectives:	fluid flow, heat transfer and mass transfer. This course also aims to make the student									
	numerical techniques required to solve the partial and differential equations of con-	servati	on of 1	mass						
~	energy and momentum.									
Syllabus:	Introduction to Computational Fluid Dynamics		0							
	Fundamental principles of conservation, Reynolds transport theorem, Conservation,									
	Conservation of linear momentum: Navier-Stokes equation, Conservation of Energy	zy, Ge	neral s	scala						
	transport equation.									
	Classification of Partial Differential Equations and Physical Behavior									
	Mathematical classification of Partial Differential Equation, Illustrative examples of									
	and hyperbolic equations, Physical examples of elliptic, parabolic and hyperbolic	partial	differe	enti						
	equations.									
	Fundamentals of Discretization	.1	1 (17							
	Discretization principles: Pre-processing, Solution, Post-processing, finite difference									
	finite element method (FEM), finite volume method(FVM), Finite well posed									
	problem, Possible types of boundary conditions, Conservativeness, Boundedness,	I ransj	portive	enes						
	Finite volume method (FVM).									
	Solution of Systems of Linear Algebraic Equations Criteria for unique solution, infinite number of solutions and no solution, Solution techniques for									
	systems of linear algebraic equations: Elimination, Iteration and Gradient Search me									
	method: Forward elimination and backward substitution, Assessment of number of computations, L-									
	decomposition technique, Tridiagonal matrix algorithm (TDMA)									
	Discretization of Convection-Diffusion Equations: A Finite Volume Approach									
	Finite volume discretization of convection-diffusion problem: Central difference									
	scheme, Exponential scheme and Hybrid scheme, Power law scheme, Genera									
	diffusion formulation, Finite volume discretization of two-dimensional convection-									
	The concept of false diffusion, QUICK scheme. Pressure velocity coupling, stagger	red gri	a, sin	IPL						
	algorithm, PISO algorithm for steady and unsteady flows									
	Grid Generation		1							
	Physical aspects, simple and multiple connected regions, grid generation by Pl	JE SO	lution,	gr						
<u>C</u>	generation by algebraic mapping.									
Course	1. To understand mathematical characteristics of partial differential equations.	•								
Outcomes:	2. To understand basic properties of computational methods-accuracy, stability, consistency.									
	3. To learn computational solution techniques for various types of partial differenti	al equa	ations.							
	4. To learn how to computationally solve Euler and Navier-Stokes equations.									

Course	Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1	\checkmark					\checkmark		\checkmark					
2		\checkmark											
3													
4													

- 1. H. K. Versteeg, W. Malalasekera, "An Introduction to Computational Fluid Dynamics: The finite volume method", Longman Scientific & Technical, (1995).
- 2. S. V. Patankar, "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, (1980).
- 3. T. J. Chung, "Computational Fluid Dynamics", Cambridge University Press, (2002).
- 4. J. Blazek, "Computational Fluid Dynamics: Principles and Applications", Elsevier, (2001).
- 5. John D. Anderson Jr, "Computational Fluid Dynamics", McGraw Hill Book Company, (2002).

Course Code	Course Title L T P										
CHPE-352	Microbiology for Chemical Engineers 3 0 0										
Pre-requisites:	Basic knowledge of physics and chemistry										
Course	The students will be made aware of fundamental and applied microbiology. They will learn the us										
objectives:	of microbiology in the field of chemical engineering.										
Syllabus:	Scope and History of Microbiology										
	Scope and History of Microbiology, Classification, Characterization, Identification and										
	Nomenclature of Microorganisms, Microscopy, Morphological, Structural and Biochemica										
	characteristics of prokaryotes and eukaryotes (bacteria , yeast, mold, algae, protozoa										
	actinomycetes)										
	Cultivation of Microorganisms										
	Microbiological media, physical conditions required for growth. Reproduction and Growth o										
	Microorganism: Modes of cell division, growth curve of microbes, Quantitative measurement o										
	growth.										
	Methods in Microbiology Chemical, Physical and Biological methods of selection of microorganisms, Methods of isolating										
	pure cultures, Maintenance and preservation of pure cultures, microbial mutation.										
	Microbial Metabolism										
	Metabolic pathways and Bioenergetics, Aerobic and Anaerobic growth, Transport of nutrients across cell membranes										
	Physical and Chemical Control of Microorganism										
	Major groups of antimicrobial agents, Mode of action and practical applications										
	Energy Transduction Mechanisms in Microbial Cell										
	Aerobic and anaerobic respiration, Microbial photosynthesis, Transduction, Transformation										
	Conjugation										
	Microbial Interaction										
	Roles of microbes in Nitrogen, Carbon and Sulphur cycle										
	Application of Microorganism in various Field										
	Agriculture, food, environment, medicine, public health and industry.										
Course	1. Understanding of fundamentals of microbiology.										
Outcomes:	2. Be familiar with cultivation, growth and control of microorganism.										
	3. Be familiar with advantages and disadvantages of microorganisms.										
	 Understanding of application of microbiology in chemical engineering 										
	. enderstanding of uppreation of microbiology in chemical engineering										

apping of course objectives (CO) & program outcomes (PO)												
	Program Outcomes											
1	2	3	4	5	6	7	8	9	10	11		
\checkmark						\checkmark				\checkmark		
	rse objecti	I 2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	rse objectives (CO) & progr 1 2 3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	Tse objectives (CO) & program outco 1 2 3 4 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √								

1. Pelczar M J, Chan E C S and Krieg N R "Microbiology, 5th Edition," Mc Graw Hill, New York (1995)

2. Davis B D, "Microbiology", Harper and Row Publications, Hageston (1980)

- 3. Salle A J, "Fundamental Principles of Bacteriology", 7th Edition, Tata McGraw Hill, New Delhi (1984)
- 4. Stanier R Y, "Text in Microbiology" McMillan Press London (1995)
- 5. Casida L E, "Industrial Microbiology", New Age International Publishers, New Delhi (2003)

Course Code	Course Title	L	Т	Р
CHPE-353	Biomass Conversion Processes	3	0	0
Pre-requisites:	None			
Course objectives:	Characterize different biomass feedstocks based on its constituents a Understand the analytical techniques to characterize biomass• Understa various biomass pretreatment and processing techniques in terms of their different biomass type for biomass conversion processes; combus	nd an applic	d eval abilit	uate y for
	gasification and liquefaction for production of value added bio-products.			
Syllabus:	Introduction: Importance of Bioenergy and bio-fuels,Global and Indian scenario, Ty characterization-proximate and ultimate analysis, determination of structure of biomass. Pretreatment of biomass: Pretreatment processes specific to various conversion processes for product products, Physical treatment processes, thermal, biological, chemical, treatment processes Conversion processes: Biochemical conversion processes, Thermochemical conversion processes gasification, pyrolysis, hydrothermal liquefaction. Catalytic processes-typ their influence on product quality. Reaction kinetics-thermograve determination of kinetic parameters using various models. Various types bio-products-importance, characterization, properties, life cycle anal environmental impacts. Integrated hybrid conversion processes.Design of incorporating various unit operations, mass and energy balance, sustail using Aspen plus and other simulation packages.	ction of physic ses-Co bes of vimetr of bio ysis a bior	ompor of targ ochen ombus catal ic st o-fuels and efiner	eted nical tion, ysts, udy, and their y by
Course	1. Understand basic concepts about biomass derived energy.			
Outcomes:	 Understand and evaluate various biomass pretreatment and processing Able to understand the various biomasses to energy conversion process Ability to design a sustainable biorefinery for biofuels and bioenergy p combining various processes 	es.	-	7

Mapping of cou	ırse objecti	ves (CO)	& progra	am outco	omes (PO)							
Course	Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1			\checkmark		\checkmark	\checkmark							
2			\checkmark			\checkmark	\checkmark						
3		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						
4													

1. Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.-G., Gnansounou, E., Biofuels: Alternative feedstocks and conversion processes, Academic Press, U.S.A., 2011.

2. Brown, R.C. (Ed.) Thermochemical processing of biomass into fuels, chemicals and power, Wiley, 2011.

3. Clark, J., Deswarte, F. (Ed.) Introduction to chemicals from biomass, John Wiley and Sons, U.K., 2008.

4. Basu, Prabir. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2013.

5. Chen, Hongzhang, and Lan Wang. Technologies for biochemical conversion of biomass. Academic Press, 2016.

Course Code	Course Title	L	Т	Р						
CHPE-354	Nano Science and Technology	3	0	0						
Pre-requisites:	Engineering chemistry and physics									
Course Information:	The course aims at understanding the bottom-up(includes both chemical and physical									
	methods) and the top-down methods(mainly physical methods) for the synthesis of									
	nanostructured materials. The course also focuses on different type of nanostructures									
	such as carbon nanotubes(CNT), metal and metal oxide nanoparticles, self-assembly of									
	these nanostructures. The devices developed out of these nanostructures	s sha	ll be	also						
	discussed.									
Syllabus:	Introduction									
	Nano technology, history, motivation, materials, devices and systems.									
	Fabrication of Nanomaterials									
	Top down & Bottom up Fabrication, Solution based Synthesis of Nanopa									
	Phase Synthesis & Synthesis with framework, Lithography and Chemi			ing,						
	Nanolithography, Dip Pen Lithography, e-beam lithography, Liftoff lithography.									
	Quantum Structures									
	Quantum Well, Quantum wires, Quantum Dots, Super lattices & Layered Structures,									
	Quantum Computing.									
	Self Assembly									
	Supramolecular& Dimension Control in Nanostructures, thermodynam	ics a	nd co	oded						
	self-assemblies.									
	Carbon Nanostructures and Biomaterials			_						
	Carbon molecules, clusters, carbon nanotubes and their applicati									
	Nanomaterials, Bionanocomposites, Biometrics, molecular motors. DN	A Co	ompu	ing,						
	Biophotonics.									
	Nanodevices									
	Electronic, Magnetic, Mechanical, Photonic, Fluidic and Biomedical devi									
Course Objectives:	1. To understand the basic concepts of nanostructures and their properti									
	2. To study the synthesis processes, for the manufacture of nanomateria									
	3. To understandthe structure and property relationship of various nano									
	4. To get familiar with latest devices and technologies based on nanoma	ateria	ls.							

Course		Program Outcomes									
Objectives	1	2	3	4	5	6	7	8	9	10	11
1	✓					✓					\checkmark
2	✓								✓		
3	✓										
4	✓	✓			✓	✓				✓	\checkmark

1. Poole, C. P., Owens, F. J., "Introduction to Nanotechnology", Wiley, (2003).

2. Ratner, M., Ratner, D., "Nanotechnology", Prentice Hall, (2003).

3. Wilson, M., Kannagara, K., Smith, G., Simmons, M., Raguse, B., "Nanotechnology", CRC Press, (2002).

4. Ozin, G. A., Andre, C. A., "Nanochemistry: A Chemical approach to Nanomaterials", Royal society of Chemists. (2005)

5. Foster, L. E., "Nanotechnology, Science Innovation & Opportunity", Pearson Education, (2007).

Course Code	Course Title L T P										
CHPE-355	Environment Impact Assessment 3 0 0										
Pre-requisites:	Knowledge of Environment Science & Technology										
Course	The objective of the course is to introduce students to the process of Environmental										
objectives:	Impact Assessment (EIA) and the procedures that are followed in environmental										
-	management in industry.										
	Students are introduced with some of the basic environmental assessment techniques										
	Through case studies, students will learn to present and explain the components and										
	decision making processes involved in environmental assessment.										
	Students will create a visual representation of data that comprises an environmental										
	impact statement										
Syllabus:	Environment Impact Assessment (EIA)										
	Concept of EIA, Origin of EIA, Procedure of EIA, Evaluation Methodology for EIA,										
	Scope Studies, Preparation and Review of Environment Impact Statement (EIS).										
	Life Cycle Assessment (LCA)										
	Introduction of LCA, Importance of LCA, Environmental Parameters in LCA,										
	Documentation in LCA.										
	Waste Minimization										
	Introduction, Types of Waste, Benefits of Waste Minimization, Elements of Waste										
	Minimization Programme, Integrated System for Waste Management.										
	Environmental Audit (EA)										
	Concept of EA, Necessity and Importance of EA, Audit Items, Audit Procedures.										
	Environmental Management System (EMS)										
	Introduction, Terminology and Certification, Environmental Standards, the International										
	Standard Organization (ISO), the ISO 9000 and the ISO 14000 Family of Standards,										
	Guides and Technical Reports, ISO 14001 Certification as a Tool for Sustainable										
	Development										
	Case Studies										
	Discussion and analysis of various Case studies of environmental engineering projects.										
Course	1. Ability to understand the current EIA methods and the techniques and tools used										
Outcomes:	2. Ability to understand the current assessment methods and legislation										
	3. Ability to understand the current environmental monitoring systems										
	4. Ability to apply knowledge acquired to the process of environmental impact modeling										
	and prediction as a design tool with application to a number of case studies										

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	omes (PO)							
Course		Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1												
2												
3		\checkmark										
4												

1. Anjaneyulu Y., "Environment Impact Assessment Methodologies", B S Publications, (2002).

 Canter L. W., "Environment Impact Assessment", McGraw Hill, Second Edition, (2005).
 Garg S. K., Garg R., Garg R., "Ecological and Environmental Studies", Khanna Publishers, First Edition, (2006).

Santra S. C., "Environmental Science", New Central Book Agency (P) Ltd., Second Edition, (2006). 4.

5. Uberoi N. K., "Environmental Management", Excel Books, Second Edition, (2006).

Course Code	Course Title	L	Т	Р
CHPE-356	Industrial Rheology	3	0	0
Pre-requisites:	Undergraduate level courses in Fluid Mechanics, Heat Transfer, Mass Trans	fer an	d Tran	sport
-	phenomena.			-
Course	Rheology is the subject which deals with the rheological properties (viscosit	y, she	ar mod	lulus,
objectives:	loss modulus etc) of solids, fluids, viscoelastic fluids and solids. Most of the	e indu	istrial f	flows
	are non-Newtonian in nature and are not studied enough in the undergraduate	cours	ses and	with
	this course; students will be able to understand the importance of rheology	and t	the wo	rking
	principles of different kinds of rheometer. Finally, students will be able t	o und	erstand	l and
	analyze the industrial flows.			
Syllabus:	Introduction			
	Introduction to rheology, solid and fluid behavior, time independent flu			
	dependent fluid behavior (thixotropy and rheopexy), linear viscoela	sticity	, nonl	inear
	viscoelasticity, dimensional considerations.			
	Rheometry for Non Newtonian Fluids		-	
	Shear flow rheometry- Capillary viscometers, rotational viscometers			
	measurements, Introduction and working of Capillary viscometers, rotati	onal v	viscom	eters,
	stress rheometers, basics of elongation flow rheometry.			
	Rheology of Polymeric Liquids			and
	Polymer chain conformation, different regimes of polymeric solutions-dilut	e, sem	11-a11ut	e and
	concentrated, effect of temperature. Flow in Pipes and in Conduits of Non-Circular Cross Section			
	Fluid flow in laminar flow in circular tubes, power law fluids, Bingham pla	etic 1	viold no	obudo
	plastic fluids, generalized Reynolds no for time independent fluids, laminar fl		-	
	parallel plates, and laminar flow in concentric annulus.	0 111	two m	mitte
	Momentum and Heat Transfer In Boundary Layer Flows			
	Laminar flow in circular tubes, full-developed heat transfer to power law	fluids	s in lar	ninar
	flow, laminar flow of power law liquids over a plate.		ui	
Course	1. Understanding the importance of Rheology.			
Outcomes:	2. Introducing the theories of linear and nonlinear viscoelasticity.			
	3. Exposure to complex fluids and their behavior in stress and strain controlle	d expe	eriment	s.
	4. Ability to analyze the industrial non-Newtonian flows.	•		

Course		Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1								\checkmark				
2								\checkmark				
3												
4												

- 1. Christopher W. Macosko, 'RHEOLOGY principles, measurements and applications',1st ed., Wiley-VCH, (1994).
- 2. Bird, Stewart W. E. and Lightfoot, "Transport Phenomena", John Wiley and Sons, (2002).
- 3. Chabra, Richardson, "Non Newtonian fluids in Process Industries", Butterworth, Melbourne, (1999).
- 4. Faith A. Morrison, "Understanding Rheology", OXFORD university press, New York (2001).
- Welty J. R., Wilson R. E., Wicks C E, "Fundamentals of Momentum, Heat and Mass Transfer", 4th Edition, John Wiley & Sons, (2001).Tanners R. I., "Rheology: An Historical perspective", Elsevier, Amsterdam, (1998).

Course Code	Course Title L T P										
CHPE-357	Optimization Techniques 3 0 0										
Pre-requisites:	None										
Course	To understand the concepts of optimization methods and algorithms for solving various types										
objectives:	of optimization problems. Research interest is developed and promoted in optimization										
-	techniques for engineering problems.										
Syllabus:	Introduction:										
	Introduction to optimization and its scope in chemical process design, Developing Models for										
	Optimization, Formulation of the Objective Function.										
	Optimization Theory and Methods:										
	Basic Concept of Optimization of Unconstrained Functions: One-Dimensional Search										
	Unconstrained Multivariable Optimization										
	Linear & Nonlinear Programming and Applications:										
	Linear Programming (LP) and Applications, Nonlinear Programming with Constraints										
	Global Optimization for Problems with Continuous and Discrete Variables. Constrained										
	multivariable optimization.										
	Mixed-Integer Programming & Examples:										
	Mixed-Integer Programming, Optimization in Large-Scale Plant Design and Operations,										
	Integrated Planning, Scheduling, and Control in the Process Industries, Process integration										
	examples.										
	Application of Optimization:										
	Heat Transfer and Energy Conservation, Separation Processes, Fluid Flow Systems, Chemica										
	Reactor Design and Operation										
Course	1. Students will be able to learn techniques to solve Linear and non-Linear Programming										
Outcomes:	Problems.										
	2. The major limitations and capabilities of deterministic operations research modeling										
	will be learnt as applied to problems.										
	3. The knowledge in this course lead to optimization of resources available.										
	4. Ability to optimally design the equipments and resource allocation.										

Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	\checkmark										
2											
3											
4											

- 1. Edgar T. F., Himmelblau, D. M., "Optimization of Chemical Process", McGraw Hill, (1989).
- 2. Urbanier K., McDermott C., "Optimal Design of Process Equipment" John, Wiley, (1986).
- 3. Reklaitis G. V., Ravindran A., Regsdell K. M., "Engineering Optimisation", John Wiley, New York, (1980).
- 4. Biles W. E., Swain, J. J., "Optimization and Industrial Experimentation", Inter Science, New York, (1980).
- 5. Seinfield J. H., Lapidus L., "Process Modelling, Estimation and Identification", Prentice Hall, Englewood Cliffs, New Jersey, (1974).

Course Code	Course Title	L	T	P							
CHPE-358	Petroleum Recovery Technology Basic knowledge of fluid mechanics and general sciences (physics and chemistry	3	0	0							
Pre-requisites: Course	This course deals with the study of modern technology involved in the re-		ry of	the							
Information:	petroleum via drilling and other operations. Also deals with the knowledge reg										
mormation.	and modification in technology by which the demand and supply for the petroleu										
	fill in optimized way.			lull							
Syllabus:	Petroleum as a Resource Material										
	Indian Sedimentary basins, Types of rocks-Igneous rocks, Metamorphic rock rock, Kerogen and classification, Origin, Migrations and Accumulation of source, Migration of oil-mechanism pattern and barriers, Reservoir rocks a Entrapment of oil-types and mechanism etc. Physical Properties of Reservoir Rock	Hyd ind c	rocart ap ro	bons							
	Core analysis, conventional core analysis, conventional core analysis, Porosity, effective porosity, primary porosity, secondary porosity, porosity measurement, permeability, Effective										
	permeability, fluid saturation, electrical resistivity, Darcy's law, Single and M etc.										
	Special Core Analysis										
	Wettability, capillary pressure characteristics, relative permeability, oil window fluids through porous media: Darcy's law, single and multiphase flow. Reserved porous media, reservoir drive mechanism etc. Petroleum Exploration: Gravitation Seismic, Electrical, Radioactive, Well logging methods etc.	fluids through porous media: Darcy's law, single and multiphase flow. Reservoir flow through porous media, reservoir drive mechanism etc. Petroleum Exploration: Gravitational, Magnetic, Seismic, Electrical, Radioactive, Well logging methods etc. Drilling									
	Introduction to on-shore and offshore drilling operations, onshore drilling technic drilling, rotary drilling, vertical drilling, Directional drilling, Horizontal dril drilling rigs, drilling accessories components, drilling fluid circulation system drilling fluids, Mud parameters. Production	ling,	Offsl	hore							
	Production problems and work over operations, Well stimulation method, Hydraulic fracturing matrix treatment, acidizing etc. Open Hole Logging: Electrical Surveys, Radioactive Surveys Introduction to Well Logging: Mud logs, Pressure logs, Core logs, Wireline logs etc. Improved Oil Recovery Techniques										
	Need of additional energy for pressure maintains of a reservoirs, techniqu artificial lift methods sucker rod pumping, Immiscible, miscible, chemical Chemical Recovery processes: Polymer flooding, micellar flooding, surface alkaline flooding. Thermal recovery processes: Steam drive, cyclic steam in combustion etc.	and ctant	ther flood	mal ling							
	Petroleum Reserve Estimation										
	Reserve categories, proven and unproven reserve, type of reserve, progn- commercial reserves, balance reserve, zabalance reserve. Reserve estimatic method, material balance method, decline curve analysis, numerical simulati Monte Carlo approach etc. Development of Oil and Gas Fields	on: v	olum	etric							
	Reservoir Drive Mechanism and recovery factor, concept of well spacing, Deve Field, Technological Scheme for Development etc.	lopm	ent of	the							
Course	1. An ability to design and conduct experiments, as well as to analyze and inter-	pret d	lata.								
Outcomes:	2. An ability to design a system, component, or process to meet desired needs constraints such as economic, environmental, social, political, ethical, heat	withi	n real								
	manufacturability, and sustainability.An ability to identify, formulates, and solves engineering problems related industry.	d to j	petrol	eun							

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	mes (PO)						
Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	✓	✓		✓		~		✓	✓	✓	✓
2	✓	✓		✓		✓	✓				✓
3	✓	✓		✓	✓	✓		✓	✓	✓	✓

- 1. Berger B. D., Anderson K. E., "Modern Petroleum" Penn well books.
- 2. Bradley H. B., "Petroleum Engineering Handbook", SPE.
- 3. Cole F. W., Reservoir Engineering manual.
- 4. Carl G., "Petroleum Engineering Drilling and Well Completions", Prentice Hall.
- 5. Mc Cray, Cole, "Oil Well Drilling Technology", Oklahoma Press.

Course Code	Course Title	L	Т	Р
CHPE-359	Petroleum Refining Technology	3	0	0
Pre-requisites:	Basic knowledge of organic chemistry, inorganic chemistry and chemical tech	nolog	y.	
Course	Petroleum Refining Technology is the subject which deals with the detailed s	study	of var	ious
Information:	petroleum refining operations and processes. Various aspects of refinery oper petroleum sources, technology and techniques, reaction mechanism, catalysts			
	were also been studied.			2
Syllabus:	Introduction to Petroleum Industry			
	World petroleum resources, petroleum industries in India. Scope and Purpo Global and Indianrefining scenario, Petroleum refining industry in India			
	prospects. Refinery Distillation Processes			
	Desalting and Stabilization of crude, Process description of typical sim	ple d	istillat	ion,
	Fractional distillation, crudeoil distillation, vacuum distillation etc, ASTM,			
	Distillation			
	Fuel Refining, Lube Refining and Wax Refining			
	Cracking, coking, reforming, alkylation, isomerisation, polymerizatio visbreaking. Solvent extraction, de-waxing, propane de-asphalting. De-oiling	g of c		
	crystallization, catalytic, sweating microcrystalline and petroleum wax applica	itions		
	Hydro processing			
	Hydro cracking, hydro treating, hydro finishing Two Phase oil and gas separation equipment			
	Types, their description, vessel sizing. Theory of separation and separator desi	ian		
	Three phase Oil, gas and water separators	gn.		
	Types of separators, their description. Various control and vessel internals, th	eorv	and si	zing
	of three phase separator. LACT units	leory	und bi	
	Safety and pollution considerations in refineries			
	Treatment methods, sweetening, hydrodesulphurization, smoke point improve	ment.		
Course	1. Introduction with the petroleum refinery worldwide.			
Outcomes:	2. Develop knowledge of different refining processes.			
	3. Develop knowledge of safety and pollution control in the refining industri	es.		
	4 To find the quitable refining technology for maximizing the geneline yield			

4. To find the suitable refining technology for maximizing the gasoline yield.

Course		Program Outcomes									
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1										✓	√
2	✓	✓				✓		✓	✓	✓	✓
3	✓	✓			~	✓	✓	✓	✓	✓	✓
4	\checkmark	✓		✓	~	✓		✓	✓	✓	✓

- 1. Rao B.K.B, "Modern Petroleum Refining Processes", 5th Edition, New Delhi, India, Oxford and IBH Publishing Company, (2008).
- 2. Prasad R., "Petroleum Refining Technology", Khanna publisher.
- 3. Nelson W. L., "Petroleum Refinery Engineering", McGraw Hill Book Co., (1985).
- 4. Watkins R. N., "Petroleum Refinery Distillation", Gulf Publishing Co.
- 5. Gary J. H., Handework G. E., "Petroleum Refining Technology and Economics", Marcel Dekker, Inc., (2001).

Course Co	de				Course	Title				L	Т	Р
CHPE-36	0		P	olymer	Science a	nd Engi	neering			3	0	0
Pre-requisites:	En	gineering	chemistr	y and ph	ysics							
Course	Th	e course a	ims at u	nderstan	ding the b	pasic con	cepts of	polymei	structur	e, prop	oertie	s and
Objectives:		gineering,										
	dif	ferent pro	cessing	techniqu	es for po	lymers for	or applic	ations i	n fibres,	plastic	es, ru	bber,
		face coati	-			get fam	iliar with	n comm	on testing	g and	evalu	ation
		thods for		ic materi	als.							
Syllabus:		sic Conce	-									
		ncepts an dition, cor										
		imation: N										
		ights, mol										
		lecular we										
		lymerizat lk, solutic			auspansi	on notur	norizatio	n	oricon of	fnolu	moria	otion
		ik, solutio	m, emu	sion and	suspensi	on poryr	lienzatio	n, comp		i poryi	nenz	ation
		lymerizat	ion Kin	etics								
		emistry of										
		ctions, re										
		lymerizati							n polyme	erizatio	on, ki	netic
		ain length,		ansfer re	actions, Ir	hibition	and retai	dation				
		nthetic Fi pes of Fi		inning t	achniquas	manuf	acturing	technol	oov and	annli	ratio	ns of
		ferent typ										
		orocarbon			1410510 110	, poi	, annaes,	ueryne	, , , , , , , , , , , , , , , , , , ,	una vi	ing ne	
		astics										
	Ma	nufacturii	ng techr	ology a	nd applic	cations of	f differe	ent type	s of pla	stics:	Poly	ester,
		lyethylene						• 1				
		bbers										
		ucture, p				natural	rubber	syntheti	c rubber	s: SB	R, ru	ıbber
		mpounding										
		sting and					_			_		
		ysical test										
a					ling of fur	idamenta	ls of poly	ymers, tl	neir struc	ture, p	roper	ties
Course Outcon				ring tech			1		1 • .•			
					ymerizati					1		1
	-			g differen	t process	techniqu	es and ap	plicatio	ns of fibe	ers, pla	stics	and
		rubber				4	: 1.	a da fan	1			
Monning of ac					testing an		ion meth	ous for	porymeric	c mate	mais.	
Mapping of cour Course	se outcor	nes (UU)	& prog			<u>)</u> ram Out	comes					
Outcomes	1	2	3	4	5	6	7	8	9	10		11
1	-			√	$\sqrt{1}$	√			-			
•						1					1	
2	N				N							
2 3	1				v √	$\sqrt[n]{}$				$\sqrt[n]{}$		

- Gowariker V. R., Viswanathan N. V., Sreedhar J., "Polymer Science", New Age International Publishers, 37, (1996).
 Billmeyer F. W., "Text Book of Polymer Science", Wiley Tappers, (1994).
 Ghosh P., "Polymer Science and Technology of Plastics and Rubber", Tata McGraw Hill, (2001).
 Gupta R. K., Kumar A., "Fundamentals of Polymer Engineering", 2nd Edition, Marcel Dekkar, (2003).
 Fried L P. "Dekmar Science and Technology", PULL serving (2009).

- Fried J. R. "Polymer Science and Technology", PHI Learning, (2008). 5.

Course Code	Course Title	L	Т	Р					
CHPE-361	Process Plant Utilities	3	0	0					
Pre-requisites:	Fluid Mechanics, Heat Transfer and Mass Transfer								
Course	The course provides the knowledge of various process plant utilities and the	eir effi	cient	use.					
objectives:	The course creates a fundamental understanding of importance of water	wate	r sou	ces,					
	storage, consumption pattern, reuse and treatment methods.								
	The course helps to develop an understanding for the air refrigeration	cycle	es, va	pour					
	compression cycle, liquification processes, etc.								
Syllabus:	Steam								
	Boilers-classification, various types, construction, boiler mountings	& ac	ccesso	ries,					
	properties of steam-tables, Mollier Diagram.								
	Power Generation								
	Internal Combustion Engines - classification, two- stroke, four stroke	petrol	& d	iesel					
	engine, valve timing diagram, carburetor, Combustion Phenomena.								
	Refrigeration								
	Air refrigeration cycles, vapour compression cycle, P-H diagram, liquificat	ion pr	ocesse	s.					
	Compressed Air and Vacuum								
	Use of compressed air, classification of compressors. Reciprocating compressors-								
	mechanical details, single stage and two stage reciprocating compress								
	minimum work input in multistage. Centrifugal compressor-velocit								
	centrifugal compressors, dimensional parameters, slip factor, impeller blac	e shaj	pes, lo	sses					
	in axial flow compressors.								
	Fuel								
	Natural gas, liquid petroleum fuels, coal & Coke.								
	Waste Disposal								
0	Plant sewer system and waste disposal.	1		<u> </u>					
Course	1. The students can identify different utilities required for chemical plants	and o	riteri	1 IOr					
Outcomes:	selecting the same.								
	 The students gain the knowledge of use of compressed air. The students learned best the different target of heilers interval combined. 		:						
	3. The students learn about the different types of boilers, internal combus	lion ei	igines	and					
	compressors.	00000		0.000					
	4. To enable the students to solve numerical problems on steam e effectiveness and condenser duty of an evaporator.	COHOL	ny, si	eain					
	enectiveness and condenser duty of an evaporator.								

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	mes (PO))							
Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1	\checkmark												
2													
3													
4	\checkmark		\checkmark										

- 1. Yadav R., "Thermodynamics & Heat Engines", Vol.2, Central Publishing House.
- 2. Vasandani and Kumar, "Treatise on Heat Engineering", (1979).
- 3. Lyle O., "The efficient use of steam", Her Majesty's Stationary Office, London (1968).
- 4. Baasel, William D. and Barrow H. M., "Preliminary Chemical Engineering Plant Design", John Wiley & Sons (1964).
- 5. Dodge B. F., "Chemical Engineering Thermodynamics", McGraw Hill Company (1944)

Course Code	Course Title L T P
CHPE-362	Process Intensification 3 0 0
Pre-requisites:	Advanced Mathematics, transport phenomena, chemical reaction engineering, process
	control, process equipment design
Course	The course aims to introduce concept of process integration in chemical and allied
objectives:	industries.
Syllabus:	Introduction
	Chemical Process Design and Integration, Onion Model of Process Design, Applications
	of Process Intensification
	Pinch Technology
	Pinch Technology Significance, Selection of Pinch Temperature Difference, Stream
	Splitting, Process Retrofit
	Basic Element of Pinch Design
	Pinch Design Methods, Heuristic Rules, Data Extraction, Designing, Optimization, Super
	Targeting, Grid Diagram, Composite Curve, Problem Table Algorithm, Grand Composite
	Curve
	Heat Exchanger Network
	Design of Heat Exchanger, Composite Curve, Heat Recovery, Thresholds Problem, Utility
	Selection, Energy Targeting, Area Targeting, Number of Units Targeting, Shell Targeting
	Heat and Mass Integration
	Heat Pump, Selection of heat pump relative to pinch, Heat integrations and proper
	selection of reactors for batch Processes and continuous processes, Integration of
	Distillation Column, Evaporator
Course	1. Able to understand the chemical process and process integration.
Outcomes:	2. Ability to modify processes for minimization of heat, area, number of units and cost of
	chemical industries and allied industries.
	3. Able to improve separations, heat transfer, mass transfer, mixing and integration of
	different process.
	4. Ability to do pinch analysis and analyze heat exchanger network

Course		Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1	✓										✓	
2	✓		✓		✓						✓	
3	✓		✓								√	
4		√	✓								✓	

- 1. Kemp I. C., "Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy", 2nd Ed., Butterworth-Heinemann, (2007). El-Halwagi M.M., "Process Integration", 7th Ed., Academic Press. (2006)
- 2.
- 3. Smith R., "Chemical Process Design and Integration", 2nd Ed., Wiley (2005)
- 4. Shenoy U.V., "Heat Exchanger Network Synthesis", Gulf Publishing (1995)
- Linnhoff B., Townsend D. W., Boland D, Hewitt G. F., Thomas B. E. A., Guy A. R., and Marsland R. H.; "A 5. User Guide on Process Integration for the Efficient Uses of Energy", Inst. of Chemical Engineers.

Course Code					urse Title				L	T	Р			
CHPE-363	- ·	• •	• •		Technolo	gy			3	0	0			
Pre-requisites:		ering phy				.1	.1 .	1 .		6	• .			
Course		bjectives												
objectives:		ations, th		ients use	ed esp. p	igments	and bin	ders, the	eir propei	ties, ra	t10s,			
		acturing pi		4 a1 . 4 h . a	1	aanta af					4 1 0 a			
		ke student hery used a				cepts of	paint pro	cessing,	paint aux	maries	, the			
Syllabus:		Formulati		ous of a	plication									
Synabus.		iction and		ment of	naint indu	stry Ras	ics of n a	int form	ulations (onstitu	ante			
		t, Color cl			pann muu	suy, Das	ies of pa		ulations, v	Jonstitu	ients			
	Pigme		iennsu y.											
		c and in	organic	nigment	s. classifi	cation. I	Pigment	Properti	es. Pigm	ent vol	ume			
		tration, F												
		nic pigmer						0	10	,				
		s or Resi			10									
	Natura	l and synt	hetic resi	ins, Acry	lic resins	and emu	lsions, A	lkyd resi	ins, Epox	y resins	and			
	polyur	polyurethanes.												
		Drying Oils Types of oils from natural origins, Drying and semidrying oils, Modification of drying												
							nidrying	oils, M	odificatio	n of dr	ying			
		died oils,		dation ar	nd reaction	18.								
		Auxiliarie	-	-						_				
		additives,					Plastici	zers, so	ofteners,	extend	rers,			
		ers, Exteri				5.								
		Manufact				of mice	nonto or	d auton	dana An	liantin				
		processing				, or pigi				meano				
					Anolycia	and tasti	ng of noi	nt Envir	onmontal					
Course									onmental	aspects				
Course		udents wil	l learn th	e history	and deve	lopment	of paint a	and surfa	ce coating	aspects gs.				
Course Outcomes:	2. Stu	udents wil idents will	l learn th l understa	e history and the v	and deve arious nat	lopment 10materia	of paint and a sed f	and surfa	ce coating	aspects gs.				
	 Stu Stu 	udents wil idents will idents will	l learn th l understa l learn the	e history and the v e paint a	v and deve various nar uxiliaries	lopment 10materia and varni	of paint a als used f shes.	and surfa or paint	technolog	aspects gs.				
	 Stu Stu 	udents wil idents will	l learn th l understa l learn the	e history and the v e paint a	v and deve various nar uxiliaries	lopment 10materia and varni	of paint a als used f shes.	and surfa or paint	technolog	aspects gs.				
Outcomes:	 2. Stu 3. Stu 4. Stu 	udents wil idents will idents will idents will	l learn th l understa l learn the l learn fo	e history and the v e paint a rmulatio	and dever various narious narious uxiliaries n of vario	lopment nomateria and varni us paints	of paint a als used f shes.	and surfa or paint	technolog	aspects gs.				
Outcomes:	 2. Stu 3. Stu 4. Stu 	udents wil idents will idents will idents will	l learn th l understa l learn the l learn fo	e history and the v e paint a rmulatio	y and dever various narious narious uxiliaries n of vario comes (P(lopment nomateria and varni us paints	of paint a als used f shes. for diffe	and surfa or paint	technolog	aspects gs.				
Outcomes: Mapping of cour	 2. Stu 3. Stu 4. Stu 	udents wil udents will udents will udents will ives (CO)	l learn th l understa l learn the l learn fo	e history and the v e paint a rmulatio	y and dever various narious narious uxiliaries n of vario comes (P(lopment nomateria and varni us paints))	of paint a als used f shes. for diffe	and surfa for paint	technolog	aspects gs.				
Outcomes: Mapping of cour Course	 2. Stu 3. Stu 4. Stu se object 	udents wil idents will idents will idents will	l learn th l understa l learn the l learn fo & progr	e history and the v e paint a rmulatio :am oute	y and deve arious nar uxiliaries n of vario comes (PC Progra	lopment nomateria and varni us paints D) am Outc	of paint a ils used f shes. for diffe omes	and surfa for paint rent appl	technolog	aspects gs. y.				
Outcomes: Mapping of cour Course Outcomes	2. Stu 3. Stu 4. Stu se object	udents will adents will adents will adents will ives (CO)	l learn th l understa l learn the l learn fo & progr	e history and the v e paint a rmulatio :am oute	v and deve arious nar uxiliaries n of vario comes (PC Progra 5	lopment nomateria and varni us paints D) am Outc 6	of paint a als used f shes. for diffe omes 7	and surfa for paint rent appl	technolog	aspects gs. y.				

✓

4

Payne H F, Organic Coating Technology Vol. I & II, Wiley, New York, (1954) 1.

✓

√

Morgans H M, Outlines of Paint Technology, 3e, CBS, New Delhi, (2001) 2.

3. Joseph Bijos, Good Painting Practicies, Wiley, New York, (1967)

✓

4. Bentley and Turner, Introduction to Paint Chemistry, and Principles of Paint Technology, fourth Edition, CRC Publishers, Austria, (1997)

✓

√

✓

√

√

Course Code	Course Title L T P
CHPE-451	Corrosion Engineering 3 0 0
Pre-requisites:	Basics course on material science and chemistry
Course	This course provides a foundation for understanding the forms of corrosion, the
objectives:	mechanisms of corrosion, electrochemical methods to study and measure corrosion, and
	the principles and methods leading to mitigation of corrosion problems that might occur in engineering practice.
Syllabus:	Basic Concepts
	Definition and importance, impact on economy, Electrochemical reactions, Corrosion rate
	and its determination, Theories of corrosion, Polarization, Passivity, Metallurgical aspects.
	Forms of Corrosion
	Galvanic corrosion, crevice corrosion, pitting, intergranular corrosion, erosion corrosion,
	flow-accelerated corrosion, stress corrosion cracking, hydrogen induced
	cracking, Microbiologically induced corrosion, underground corrosion, high-temperature
	corrosion, corrosion fatigue and some case studies.
	Corrosion Testing
	Specimen preparation, exposure tests, open corrosion potential, linear polarization, Tafel
	slopes, corrosion current, slow-strain-rate tests, AC impedance and Commercial corrosion
	probes.
	Prevention and Control of Corrosion
	Cathodic protection, Sacrificial anodic protection, Modification of environment, Coatings
	and inhibitors, Material selection and design.
Course	1. Understanding the importance and mechanisms of corrosion
Outcomes:	2. Understanding the aspects of electrochemistry relevant to corrosion rate measurement.
	3. Ability to understand the concepts of various types of corrosion and its testing.
	4. Ability to select viable techniques for corrosion prevention.

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	mes (PO))							
Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1													
2													
3													
4													

- 1. Fontana, M.G., Corrosion Engineering, Tata McGraw-Hill (2008). 3rd ed.
- 2. Denny A. Jones, Principles and Prevention of Corrosion, 2nd Edition, Pearson-Prentice Hall, 2005.
- 3. Roberge P R, Corrosion Engineering, McGraw Hill, New York.
- 4. Uhling H H and Revie R W, Corrosion Control, John Wiley & sons. INC,.
- 5. Trethewy& Chamberlain, Corrosion for Science and Engineering, Longman Sc& Tech; 2nd revised edition edition, 1996

CUDE 452	Course Title	L	T	F							
CHPE-452	Cement Technology	3	0	(
Pre-requisites:	Chemistry, Physics, Mechanical operations		.1. C.	1							
Course	The course aims to provide knowledge to the students regarding the raw										
objectives:	cement, manufacturing of the cement, types of the cement, testing of	the ce	ement	ar							
C II I	hydration of the cement										
Syllabus:	Introduction to Cement	4	f f								
	Cement and its importance in construction, History of cement and cemer										
	process, material composition of cement, various unit operation of ceme	ent ma	inulac	tui							
	the present status and future of cement industry in India. Types of Cement										
	**	ortland	1 Can								
	Description and use of various type of Cement such as, Ordinary P Portland Pozzalana Cement, Portland Slag Cement, Sulphate Resistant										
	Portland Cement, and Low heat Cement, Masonry Cement, Oil Well Ceme		ent, v	<i>i</i> III							
	Raw material for Cement	π.									
	Source of Lime, Limestone, Chalk, Marl, Industrial waste, geological	distr	ibutio	n							
	limestone deposits in India, Assessment of limestone deposits for Ceme										
	Argillaceous Raw Materials: Source of Silica, Alumina, Iron Oxide, Sha										
	coal ash and additives use as corrective materials, Fly ash, Slag, lime s										
	raw materials.	luuge		110							
	Manufacturing of cement										
	Process flow diagram, Chemical reaction during clinkerisation, Role of m	iner co	onstitu	ıer							
	in clinkerization, Thermo chemistry of clinker formation										
	Packing and Dispatch of Cement										
	Finish grinding of clinker with gypsum and other additives, combined	ed grin	nding	aı							
	separate grinding packing machines, use of grinding aids, type of p										
	tolerances, bag and bulk supply, dispatch of cement.	-									
	Testing of Cements										
	Insoluble residue in cement, estimation of free lime in cement, fine	ness o	of cen	nei							
	standard consistency of cement, Initial and Final setting of cement, sound	iness of	of cen	nei							
	slump test of concrete, Flow table test of mortar , Heat of hydration of c	ement	.Vee	В							
	consistometer test.										
	Hydration of Cement										
	Hydration of clinker minerals, role of gypsum in cement hydration proce	ess, hy	dratio	n							
	Portland cement and strength of Portland cement										
Course	1. Ability to analyze the flow of raw material to cement formation qu	iantita	tively	a							
Outcomes:	qualitatively		_								
	2. Ability to apply the concepts of unit operation and unit processes that	are en	nploye	ed							
	cement plants	c									
	3. Ability to identify the engineering problems associated with the manufacturin										
	cement		. 1								
	4. Ability to understand the testing and application of cement as building	mater	al								
apping of cours	e objectives (CO) & program outcomes (PO)										

Course	Program Outcomes											
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1												
2	\checkmark											
3											\checkmark	
4												

- 1. F. M. Lea, Chemistry of Cement and Concrete, Arnold, London.
- 2. W. H Duda, Cement Data Book, Verlag G m Bh, Berlin
- 3. R. H. Bouge, Chemistry of Portland Cement, Reinhold, New York

CHPE-453 Energy Management and Audit 3 0 0 Pre-requisites: None The course aims at understanding the basic concepts of energy management, energy monitoring and optimization of energy-use. The processes and parameters involved in an Energy Audit are also included. The course also aims to study the human and non-human project resource management, relevant to energy consumption. Finally, th course is meant to get familiar with techniques and tools for energy monitoring and targeting. Syllabus: Energy Scenario Commercial and Non-Commercial Energy, Primary Energy Resources, Commercia Energy Pricing, Energy Sector Reforms, Energy and Environment: Air Pollution Climate Change, Energy Sector Reforms, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features. Kyoto Protocol Global warming. Energy Management & Audit Definition, Types of energy audit, Energy performance, matching energy use to requirement Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments, Energy and Cost Indices. Energy Ktion Planning Key elements, Force field analysis, Energy policy purpose, perspective, Contents Formulation, Ratification, Organizing - location of energy management, To maagement support, Managerial function, Roles and responsibilities of energy manager. Accountability. Motivating/Motivation of Enployees Information system designing barriers, Strategies; Marketing and communicating training and planning. Financial Management, Investment, Ne present value, Internal rate of return, Cash flows, Risk and	Course Code	Course Title	L	Т	Р
Course Objectives: The course aims at understanding the basic concepts of energy management, energy monitoring and optimization of energy-use. The processes and parameters involved in a Energy Audit are also included. The course also aims to study the human and non human project resource management, relevant to energy consumption. Finally, the course is meant to get familiar with techniques and tools for energy monitoring and targeting. Syllabus: Energy Scenario Commercial and Non-Commercial Energy, Primary Energy Resources, Commercia Energy Production, Energy Needs of Growing Economy, Long Term Energy Scenario Energy Pricing, Energy Scentry, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features. Kyoto Protocol Global warming. Energy Management & Audit Definition, Types of energy audit, Energy management (audit) approach-understanding energy substitution, Energy audit instruments, Energy and Cost Indices. Energy Action Planning Key elements, Force field analysis, Energy policy purpose, perspective, Contents Formulation, Ratification, Organizing - location of energy management, To management support, Managerial function, Roles and responsibilities of energy manager, Accountability. Motivating-Motivation of Employees Information system designing barriers, Strategies; Marketing and communicating training and planning. Financial Management, Investment-need, Appraisal and criteria Financial analysis techniques-S imple pay-back period, Return on investment, Ne present value, Internal rate of return, Cash flows, Risk and sensitivity analysis Financing options, Energy performance contracts and role of ESCOS. Project Management	CHPE-453	Energy Management and Audit	3	0	0
 monitoring and optimization of energy-use. The processes and parameters involved in a Energy Audit are also included. The course also aims to study the human and non human project resource management, relevant to energy consumption. Finally, th course is meant to get familiar with techniques and tools for energy monitoring and targeting. Syllabus: Energy Scenario Commercial and Non-Commercial Energy, Primary Energy Resources, Commercia Energy Production, Energy Needs of Growing Economy, Long Term Energy Scenario Energy Production, Energy Sector Reforms, Energy and Environment: Air Pollution Climate Change, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features. Kyoto Protocol Global warning. Energy Management & Audit Definition, Types of energy audit, Energy management (audit) approach-understanding energy substitution, Energy performance, matching energy use to requirement Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments, Energy and Cost Indices. Energy Action Planning Key elements, Force field analysis, Energy policy purpose, perspective, Contents Formulation, Ratification, Organizing - location of energy management, To management support, Managerial function, Roles and responsibilities of energy manager, Accountability. Motivating-Motivation of Employees Information system designing barriers, Strategies; Marketing and communicating training and planning, Financial Management, Investment-need, Appraisal and criteria Financial analysis techniques- Simple pay-back period, Return on investment, Ne present value, Internal rate of return, Cash flows, Risk and sensitivity analysis Financing options, Energy performance contracts and role of ESCOs. Project Management Definition and scope of project, Technical design, Financing, Contracting Implementation and performance monitoring. M	Pre-requisites:	None			
 Commercial and Non-Commercial Energy, Primary Energy Resources, Commercia Energy Production, Energy Needs of Growing Economy, Long Term Energy Scenario Energy Production, Energy Sector Reforms, Energy and Environment: Air Pollution Climate Change, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features. Kyoto Protocol Global warming. Energy Management & Audit Definition, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, matching energy use to requirement Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments, Energy and Cost Indices. Energy Action Planning Key elements, Force field analysis, Energy policy purpose, perspective, Contents Formulation, Ratification, Organizing - location of energy management, Top management support, Managerial function, Roles and responsibilities of energy manager, Accountability. Motivating-Motivation of Employees Information system designing barriers, Strategies; Marketing and communicating training and planning. Financial Management, Investment-need, Appraisal and criteria Financial analysis techniques- Simple pay-back period, Return on investment, Ne present value, Internal rate of return, Cash flows, Risk and sensitivity analysis Financing options, Energy performance monitoring. Implementation plan for top management Planning Budget, Procurement Procedures, Construction, Measurement & Verification. Energy Monitoring and Targeting Definition and scope of project, Technical design, Financing, Contracting Implementation and performance monitoring. Implementation plan for top management Planning Budget, Procurement Procedures, Construction, Measurement & Verification. Energy Monitoring and Targeting Defining monitoring & targeting, Elements of mo	Course Objectives:	monitoring and optimization of energy-use. The processes and paramet Energy Audit are also included. The course also aims to study the human project resource management, relevant to energy consump course is meant to get familiar with techniques and tools for energy	ers invo human tion. Fi	olved and inally,	in an non- , the
 Course Outcomes: To understand the basic concepts of energy management, energy monitoring and optimization of energy-use. To study the processes and parameters involved in an Energy Audit. To study the human and non-human project resource management, relevant to 	Syllabus:	Commercial and Non-Commercial Energy, Primary Energy Resou Energy Production, Energy Needs of Growing Economy, Long Term Energy Pricing, Energy Sector Reforms, Energy and Environmer Climate Change, Energy Security, Energy Conservation and its Im Strategy for the Future, Energy Conservation Act-2001 and its Feature Global warming. Energy Management & Audit Definition, Types of energy audit, Energy management (audit) appro- energy costs, Bench marking, Energy performance, matching energy u Maximizing system efficiencies, Optimizing the input energy requir energy substitution, Energy audit instruments, Energy and Cost Indices Energy Action Planning Key elements, Force field analysis, Energy policy purpose, persp Formulation, Ratification, Organizing - location of energy m management support, Managerial function, Roles and responsib manager, Accountability. Motivating-Motivation of Employees Information system designing barriers, Strategies; Marketing and training and planning. Financial Management, Investment-need, Appr Financial analysis techniques- Simple pay-back period, Return on present value, Internal rate of return, Cash flows, Risk and set Financing options, Energy performance contracts and role of ESCOs. Project Management Definition and scope of project, Technical design, Financi Implementation and performance monitoring. Implementation plan for Planning Budget, Procurement Procedures, Construction, Measuremen Energy Monitoring and Targeting Defining monitoring & targeting, Elements of monitoring & tar information-analysis, Monitoring methods such as Sankey-Diagram Bar-diagrams, Techniques of energy consumption, Production, Cu	Energy tt: Air portances s. Kyoto ach-und se to rece ements, a. pective, nanagem ilities comm raisal ar investi nsitivity ng, Co top ma t & Veri geting, is, Pie-co	Scen Pollu e, En Prote erstan quiren Fuel Cont nent, of en unica nd crit ment, anal ontrac nagen ificati Data charts	ario, tion, lergy ocol. ding nent, and ents, Top lergy ting- teria, Net ysis; ting, nent, on. and
3. To study the human and non-human project resource management, relevant to	Course Outcomes:	1. To understand the basic concepts of energy management, energ optimization of energy-use.		toring	and
energy consumption.		3. To study the human and non-human project resource manage		eleva	nt to

Mapping of cou	irse outcor	nes (CO)	& progr	am outc	omes (PO)								
Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1														
2														
3														
4														

- 1. Capehart, Barney L., Turner W. C., Kennedy W. J., "Guide to Energy Management", Third Edition, Fairmont Press, Atlanta, GA, (2000).
- 2. Thumann A., Mehta D. P., "Handbook of Energy Engineering", 4th Edition Lilburn, GA: Fairmont Press, (1997).
- 3. Loftness, Robert L. "Energy Handbook." 2nd Edition, New York: Van Nostrand Reinhold Co., (1984).
- 4. Turner W., "Energy Management Handbook", John Wiley &. Sons, New York, (1982).
- 5. Lapedes, D. N., "Encyclopaedia of Energy", McGraw-Hill, New York, (1976).

Course Code	Course Title L T P									
CHPE-454	Heterogeneous Catalysis and Reactor Design300									
Pre-requisites:	Basic knowledge of chemical reaction engineering (various types of reactors: batch, CSTR									
	and PFR) and catalysts and catalytic reactions.									
Course	Objective of this course is to deliver a knowledge to the students regarding the									
objectives:	heterogeneous catalytic reactions. Also gives knowledge about various type of preparation									
	methods and characterization methods of solid catalysts. It will also help students to design									
	reactors for heterogeneous catalytic reactions.									
Syllabus:	Introduction to Heterogeneous Catalysis									
	Introduction to catalysis, types of catalysts, biocatalysts: enzymes, lipases and microbes									
	ascatalysts, application to industrial processes:one example from variouschemical and									
	allied industries, basic concepts in heterogeneous catalysis and green chemistry, catalyst									
	preparation and catalyst characterization, poisoning and regeneration.									
	Type of Reactors for Heterogeneous Catalysis									
	Industrially important catalysts and processes such as oxidation, processing of petroleum									
	and hydrocarbons, synthesis gas and related processes, environmental catalysis,									
	commercial catalytic reactors (fixed bed, fluidized bed, trickle-bed, slurry, etc.).									
	Catalytic Reactors Design									
	Design of reactor for gas-solid reactions, basic design equations and guidelines,									
	Heterogeneous data analysis for reactor design.									
	Reactor Modeling and Deactivation Kinetics									
	Reactor modeling, emphasizes the chemistry and engineering aspects of catalytic processes									
	along withproblems arising in industry, catalyst deactivation kinetics and modeling.									
	Heat and Mass Transfer Effect and Consideration									
	Heat and mass transfer and its role in heterogeneous catalysis, calculations of effective diffusivity and thermal conductivity of porous catalysts, reactor modeling, emphasizes the									
	chemistry and engineering aspects of catalytic processes along with problems arising in									
	industry, catalyst deactivation kinetics and modeling.									
Course	1. Basic knowledge about the heterogeneous catalytic reactions.									
Outcomes:										
Guicomes.	2. Will also able to prepare catalysts using different catalysts preparation methods and									
	also able to identify various physio-chemical properties of the catalysts.									
	3. Students are able to design the reactors used for two phase and three phase catalytic reactions.									
	4. Student will also to design the establishing response with heat and mass transfer limitations									

4. Student will able to design the catalytic reactor with heat and mass transfer limitations.

Course					Progra	am Outco	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1							\checkmark		\checkmark		
2									\checkmark		
3											
4	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	

Recommended books:

Levenspiel O., "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons, Singapore, (1999). 1.

2. Fogler H. S., "Elements of Chemical Reaction Engineering", 3rd Edition, Prentice Hall Inc., (1999).

Shuler M. L., Kargi F., "Bioprocess Engineering", Prentice Hall of India Pvt. Ltd., Second Edition, (2005). Smith J. M., "Chemical Engineering Kinetics", 3rd Edition, McGraw Hill, (1981). 3.

4.

5. Hill C. G., "Chemical Engineering Kinetics and Reactor Design", John Wiley, (1977).

Course Code CHPE-455			н		urse Title bon Engir				I 3		P 0
Pre-requisites:	Basic k	nowledge					nistry and	l chemica			Ū
Course Information:	hydroc various regardi	carbon eng arbons, the reactions ng various ious petrol	eir struct involving properti	ure prese g petrolet es, standa	ent in petr im refinin	oleum cr g operatio	ude. Als ons. This	o deals v subject a	with the d lso bring	chemistr s knowle	y of edge
Syllabus: Course	Scope Global prospec Refine Desalti distillar ASTM Fuel R Crackin etc. So Hydro Oil and Princip interna Horizo Qualit API gra viscosi index, Q lock in U.O.P Storag Classif roof tan area, at Transp Pipe lin petrole Probler 1. Stu	and Purpe and Indian cts, Separa ry Distilla ng, Process tion, Flood , TBP EFV efining an ng, Coking lvent extra processin cracking, 1 d Gas sepa al of separ ls, Oil and ntal three p y Monitor avity, Flast ty, Pour po Calorific v dex, Carbo Characteri e of Petro ication of i nk, Semi b nd undergr portation ortation of ne automat um produc	pse of Re a refining tion and b tion Pro- s descrip ling, Wee / Distillat d Lube l g, Reform ction, De g Hydro tre ation, Ty gas grav phase sep ing of Pe h point, Free alue, Bur on hydrog zation fac leum Pro- nflamma uried tanl ound stor foil and m ion, Leas ts, Multij / crude, F be able t	fining scenario Conversion cesses tion of ty pping, End tion etc. Refining ing, Alky w axing, ating, Hy pes of se itational se arator etc etroleum Fire point, zing point ning test gen ratio, ctor, Com- olucts ble liquid k, Import rage tank hatural ga the Automa product p Cole of floo o identif	on process pical crud trainment, /lation, Iso Propane of vdro desulp parators, t separator, t separator, t Products , Smoke p t, octane r 24 hours, Calculated rad son ca ds, Classif /export los etc. s by rail, r atic Custo ipelines, H pow behavi	e distillat Setting of omerisatio leasphalti ohurizatio heir descr Vertical t oint, Anil number, O Characte 1 ignition rbon resid ication of ss, Breath oad and p dy Transf Product ha our etc.	ion, Frac of cut poi on, Polyn ng etc. on ription. V two and t ine point Cetane nu rization f index, C due, Wate storage ing losse oipeline, fer units, andling, I	tional dis nt, Crude nerization /arious co hree phas c, Carbon mber, Vi factor, Cl factor, Cl facto	assay an assay an assay an a, and Sw ontrol and se separat residue, l scosity in oud Point omaticity diment co ating roof ds and nor ype of pij , Batch tra cycle, Int	Vacuum alysis, eetening l vessel or, Kinetic idex, Did dex, Did dex, Did dex, Did dex, Tiank, Fi n-hazard pelines, ansport derface,	g esel r ixed ls
Outcomes:	 present in petroleum crude. Gain knowledge of reaction chemistry of specific reaction that took place in petrole refining operations. Students will learn about the various operations take place in refineries to convert crude into various commercial products. Students will able to implicate technical knowledge to analyzed and solve the enginee problems involves in the petroleum refineries. 								raw		
lapping of cours	_			_							
Course						am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	1
1						✓		 ✓ 	 ✓ 		
2	\checkmark	\checkmark	 ✓ 		 ✓ 			\checkmark	✓	\checkmark	~
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	

√

√

√

 \checkmark

4

√

 \checkmark

√

√

- Nelson W. L., "Petroleum Refinery Engineering", Mc-Graw Hill Book Co., (1985).
 Watkins R. N., "Petroleum Refinery Distillation", Gulf Publishing Co.
- Watkins R. N., "Petroleum Refining Distinction", Out Fublishing Co.
 Gary J. H., Handwork G. E., "Petroleum Refining Technology and Economics", Marcel Dekker, Inc., (2001).
 Jones D. S. J., "Elements of Petroleum processing", John Wiley & Sons, (1995).
 Waquier J. P., "Petroleum Refining" Vol. I & II, Technip, (1995)

Course Code	Course Title	L	Т	Р
CHPE-456	Industrial Environmental Management	3	0	0
Pre-requisites:	Knowledge of Environment Science & Technology			
Course objectives:	The course introduces the principles associated with the industrial management and application of these principles in avoiding common difficu- with industrial environmental management. It will provide detailed under methods and techniques to resolve key issues for making industrial processing, cleaner and safer. The course will help the students to understan and waste characteristic. The course will give an overview of the safety and issues in the chemical industry.	ulties stand prodund the	associting of action	ated f the and esses
Syllabus:	 Introduction Introduction, Processes and Waste Characteristics, Pollution Control in Pro- Management according to the environment standards specific to the foll Industries: Chemical Process and Allied Industries Pesticides Industry, Paint Industry, Pharmaceutical Industry, Fertilizer Indu Distillery Industry, Acids and Explosives Industry, Petroleum Refinery and Industry, Dyes and Dye-intermediate Industry, Pulp and Paper Industry, Leat Food Processing and Allied Industries Dairy Industry, Poultry Industry, Edible Oil Industry. Textile and Allied Industries Textile Industry, Man-made Fibre and Rayon Industry, Jute Processing Indust Metallurgical and Mining Industries Iron and Steel Industry, Aluminium Industry, Copper Industry, Foundry Mining Industry, Ceramic Industry, Lime and Brick Kiln. Mechanical, Electrical, Electronics and Allied Industries Metal Fabricating Industry, Electroplating Industry, Printing Industry, Electronics Industry, Aerospace Industry. 	owing Istry, 1 Petr her Ir stry. Indu	g type Sugar ochen idustr	and nical y.
Course Outcomes:	 The students will get the knowledge of pollution control in proc management according to the environment standards specific to the v industries. The students will acquaint with the industrial environmental management 	variou	s type	
	 The students will be able to identify and assess hazards in any stage quantify and manage them as well. This course will also highlight lessons learnt from the past incidents. 			n, to

Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1							\checkmark				
2											
3											
4											

- 1. Sell N. J., "Industrial Pollution Control-Issues and Techniques", Van Nostrand Reinhold Publication, Second Edition.
- 2. Hocking M. B., "Handbook of Chemical Technology and Pollution Control", Academic Press, Third Edition, (2005).
- 3. Bhatia S. C., "Handbook of Industrial Pollution and Control", CBS Publishers and Distributors, Volume I and II, First Edition, (2002).
- 4. Dryden C. E., "Outlines of Chemical Technology", East-West Press Pvt. Ltd., Second Edition, (1973). Austin G. T., "Shreve's Chemical Process Industries", McGraw Hill Book Company, Fifth Edition, (1986).

Course Cod	le Course Title	L	Т	Р
CHPE-457	Introduction to Multiphase Flow	3	0	0
Pre-requisite	es: Knowledge of differential equations and fluid mechanics			
Course	The course attributes the knowledge of the principles of multiphase flow. The	e cours	se help	s the
objectives:	students to understand the concepts of flow past immersed bodies, two-phase fl	ow and	l intera	ction
-	of fluids.			
Syllabus:	Introduction to multiphase flow: Introduction to multiphase flow, types and applications, Common terminolo			
	and flow pattern maps. One-dimensional steady homogenous flow. Concercitical flow phenomena. One dimensional steady separated flow mode considered together but their velocities differ. (2) Phases are considered sep phase change.	l: (1)	Phases	are are
	Two-phase flow:			
	Two-phase flow through pipes: Elementary aspects, Two phase Flow patter Horizontal pipes. Two phase pressure drop calculation in Homogeneous a model for flow inside tube. Lockhart-Martinelli parameters and their applicat two-phase flows.	nd sep	arated	flow
	Interaction of fluids:			
	Mixing of a single fluid; degree of segregation, early and late mixing of partial segregation, mixing of two miscible fluids. Gas-liquid flow phenregimes formation – trickle, pulse, bubble, dispersed bubble, spray regime etc.	omeno		
	Introduction to three phase flow and flow measurement technique:			
	An introduction to three phase flow. Measurement techniques for multiphase identification, pressure drop, void fraction and flow rate measurement.	flow. I	Flow re	gime
Course	1. Understanding of the characteristics of multiphase flow and master mo	tion e	quatior	s.
Outcomes:	 Capability to analyze the multiphase flow problem with multiphase flow Reinforcement of knowledge through practice with realistic problems. Enhancement of team working skills. 			

Course					Progr	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											

- 1. C.T. Crowe, "Multiphase Flow Handbook", CRC Press, (2005).
- 2. C. E. Brennen, "Fundamentals of multiphase flow", Cambridge University Press, (2005)
- 3. N.I. Kolev, "Multiphase Flow Dynamics 1: Fundamentals", Springer, (2007).
- 4. G. Wallis, "One Dimensional Two Phase Flow", Mc-Graw Hill, (1969).
- 5. G. Hetsroni, "Handbook of multiphase systems, Mc-Graw Hill, (1982).

Course Code	Course Title L T	Р									
CHPE-458	Natural Gas Engineering 3 0	0									
Pre-requisites:	Fundamental knowledge of organic chemistry, thermodynamics, heat and mass tra	nsfer,									
	fluid mechanics and petroleum crude and natural gas recovery.										
Course	This course deals with the principle involve in the recovery of natural gas from res	ervoir									
objectives:	by the application of knowledge of various chemical engineering subjects su										
	thermodynamics, heat transfer, mass transfer, fluid dynamics and process control. I	t also									
	deals with the processing, transmission and storage of natural gas.										
Syllabus:	Gas from Condensate and Oilfields										
	Scope of natural gas industry, basic thermodynamic and system energy concepts in n										
	gas engineering, review of physical and chemical properties of natural gas and ass										
	hydrocarbons, phase behavior studies of two phase hydrocarbon systems, equation	ons of									
	states, multiple flashes, water-hydrocarbon system, vapor liquid equilibrium.										
	Flow of Fluids										
	Compression calculations, heat transfer and mass transfer principles and application										
	natural gas engineering, gas flow measurement, process control and instrumentat	on in									
	natural gas processing plants.										
	Natural Gas Processing	•									
	Field separation and oil absorption process, refrigeration and low temperature proce										
	liquefaction process, dehydration, sweetening, and sulfur recovery from natural gas,										
	processing for LPG, LNG, CNG system. Transmission of Natural Gas										
	Specifications, utilization of natural gas, underground storage and conservation of n	atural									
	gas.	aturar									
	Unconventional Gas										
	Coal bed methane, natural gas hydrate, conversion of gas to liquid, economic conside	ration									
	for development of gas fields.										
Course	1. The students will learn about the sources and recovery of natural gas.										
Outcomes:	2. Students will also attain the use of heat transfer and mass transfer principles in n	atural									
	gas engineering.										
	3. Student also learns about natural gas processing, transmission of natural ga	s and									
	unconventional gases.										
	4. The students will have a thorough understanding of scientific and engine	eering									
	principles and their application to natural gas engineering problems.										

Mapping of cou	rse objecti	ves (CO)	& progr	am outco	omes (PO)						
Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	✓	✓			✓	✓		✓	✓	✓	✓
2	✓	✓			✓			✓	✓	~	✓
3	✓					✓		✓	✓	✓	✓
4	✓	✓		✓	✓	✓	✓	✓		~	✓

- 1. Katz D. L., "Hand Book of Natural Gas Engineering", McGraw Hill.
- 2. Kumar S., "Gas Production Engineering", Gulf Publishing Co., (1987).
- 3. Ikoku C. K., "Natural Gas Engineering", John Wiley, (1984).
- 4. R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, "Transport Phenomena", 2nd Edition., John Wiley & Sons, (2002).
- 5. Christie John Geankoplis, "Transport Processes and Separation Process Principles", 4th Edition, PHI Learning Private Limited., (2013).

CHPE-459 New and Renewable Energy Resources 3 0 0 Pre-requisites: Course will be accessible to most students who have completed their first two years of study at an Undergraduate level. Course This course covers in a comprehensive manner the operating principle of a range of non-conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Nifferent methods of solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of b	Course Code	Course Title L T P
study at an Undergraduate level. Course objectives: Study at an Undergraduate level. This course covers in a comprehensive manner the operating principle of a range of non- conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycl	CHPE-459	80
Course objectives: This course covers in a comprehensive manner the operating principle of a range of non- conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy	Pre-requisites:	Course will be accessible to most students who have completed their first two years of
objectives: conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Solar calculations: Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Pote		study at an Undergraduate level.
 characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Occan and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: 1. Create awareness among students about Non-Conventional sources of energy resources, the fundamental concepts and their application. 3. The students acquire sufficient knowledge about various types of renewable energy resources, the fundam		
 biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, min hydel power plants and their economics. I. Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students acquire sufficient knowledge about various	objectives:	
in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, min hydel power plants and their economics. I. Create awareness among students about Non-Conventional sources of energy technologies I. The students acquire sufficient knowledge about various types of renewable energy equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
Syllabus:IntroductionGlobal and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources.Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photvooltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy resources, the fundamental concepts and their application. 3. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understandi		
 Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy		
 applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Create awareness among students about Non-Conventional sources of energy technologies The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 	Syllabus:	Introduction
Solar EnergyIntroduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, min hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. 1 . Create awareness among students about Non-Conventional sources of energy technologies 2 . The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3 . The students also develop an understanding of and design related concepts of equipment and instruments used. 4 . Equip the students with knowledge and understanding of various possible		applications, Role and development of new renewable energy sources.
 concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
 Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: 1. Create awareness among students about Non-Conventional sources of energy technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible 		
Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production to Biofuels such as biodiesel, ethanol, biobutanol etc. and their groupCourse Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
 Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. 1. Create awareness among students about Non-Conventional sources of energy technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
apparent time, Soar day length.Geothermal Energy Resources, Types of wells, Methods of harnessing the energy.Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills.Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
Geothermal Energy Resources, Types of wells, Methods of harnessing the energy.Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills.Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
Resources, Types of wells, Methods of harnessing the energy.Wind EnergySources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills.Biomass and BiofuelsRecycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
 Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Oteate awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. 		
Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills.Biomass and BiofuelsRecycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
 evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
Biomass and BiofuelsRecycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
 Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
 biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Otean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Otean and average avera		
Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course 1. Create awareness among students about Non-Conventional sources of energy technologies Outcomes: 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: 1. Create awareness among students about Non-Conventional sources of energy technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
conversion techniques, mini hydel power plants and their economics. Course 1. Create awareness among students about Non-Conventional sources of energy technologies Outcomes: 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
Course 1. Create awareness among students about Non-Conventional sources of energy technologies Outcomes: 1. Create awareness among students about Non-Conventional sources of energy technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
Outcomes: technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible	Course	
 The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		6
resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible	Outcomes:	
 The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
4. Equip the students with knowledge and understanding of various possible		
		1 1
incentaliisiiis about renewable energy projects		
		incentanishis about renewable energy projects

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	mes (PO)						
Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4	\checkmark										

- 1. Rai G. D., "Non-conventional Energy Sources", Standard Publishers Distributors, (2007).
- 2. Sukhatme K., Sukhatme S. P., Solar Energy: Principles of Thermal Collection and Storage, 2nd Edition, Tata McGraw Hill, (1996).
- 3. Mittal K. M., "Non-conventional Energy System", Wheeler Publishing Co. Ltd, (1997).
- 4. Rao S., Parulekar B. B., "Energy Technology", Khanna Publishers, (1995).
- 5. Desai A. V., "Non-convetional Energy", Wiley Eastern, (1990).

Course Code	Course Title L T P									
CHPE-460	Petrochemical Technology 3 0 0									
Pre-requisites:	Basic knowledge of organic chemistry and chemical technology.									
Course	Petrochemical technology is the subject which deals with the manufacturing processes of									
Information:	various chemicals whose origin is from petroleum products. This subject also deals with the									
	information about the technologies which are being used in the manufacturing of these various									
	products.									
Syllabus:	Petrochemicals- An Overview									
	Growth of global and Indian petrochemicals industries, definition of petrochemicals, history of									
	petrochemicals industry, development of petrochemicals industry in India, economics of									
	petrochemicals industry, sources of petrochemicals- natural gas and petroleum, classification of									
	petrochemicals.									
	Chemicals from Methanol and Synthesis gas,									
	Dxo-products, methanol, formaldehyde, carbon-di-sulphide, Hydrogen cyanide									
	Ethane, Ethylene and Acetylene Synthetic ethanol, aldehyde, acetaldehyde, acetic acid, vinyl acetate, butraldehyde and ethy									
	hexanol and DOP, ethylene oxide, ethylene glycol, acrylonitrile, ethanol, amines, ethyl chloride, ethylene di chloride									
	Chemicals from Propane and Propylene									
	Butadiene, butanol amines, butyl acetate, methyl-ethyl ketone									
	Butanes, Butane, Pentanes and Pentanes									
	Iso-propanol, acetone, glycerol, propylene oxide, propylene glycols, cumene,									
	Chemicals from Aromatics									
	monochloro, dichloro benzene, BHC nitro benzene, benzoic acid, nitrotoluene, pthalic									
	anhydride, isopthalic acid, terethalic acid, dimethyl terepthalate, maelic anhydride.									
	Future of Petrochemicals									
	Integrated petro chemical complex, energy crisis in petro chemical industries, natural gas as									
	petro chemical feed stock, import of heavy feed stocks on petro chemicals, ecology and energy									
	crisis. Coal as an alternative to oil, energy crisis and industrial fuel, synthetic fuels, trends in									
	petro chemical industries.									
Course	1. Students will have knowledge of the past, present and future of petrochemical industries									
Outcomes:	globally and nationally.									
	 Will get a knowledge regarding the manufacturing of various petrochemicals. 									
	3. Will have ability to understand the process technology employed in the manufacturing of									
	various petrochemical.									
	4. Will provide the overview of petrochemical industry.									

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	mes (PO))								
Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1	✓				✓		✓			✓	✓			
2	✓	✓				✓		✓	✓	✓	✓			
3	✓	✓		✓		✓		✓	✓	✓	✓			
4	✓	✓			✓	✓	✓	✓	✓		✓			

- Rao M. G. and Sitting M. "Dryden'd Outlines of Chemical Technology", 3rd Edition, East-West Press, (1997).
 Rao B.K.B., "A Text on Petrochemicals", 5th Edition, New Delhi, India, Khanna Publishers, (2015).
 Sukumar M., "Introduction to Petrochemicals", Oxford and IBH publishing Co., (1992).
 Chauvels A. and Lefebvre G., "Petrochemical Process", Vol. 4.

Course Code	Course Title L T	Р
CHPE-461	Biochemical Engineering 3 0	0
Pre-requisites:	Basic course on introduction to biosciences	
Course	This course provides the fundamental background of biological systems, bio-che	emical
objectives:	engineering, advanced bioprocess engineering, biologically mediated processes	s and
	enhances the skills in the areas of biochemical processes.	
Syllabus:	Introduction	
	Introduction to Biotechnology and Biochemical Engineering, An overview of bas	ics of
	Biology.	
	Enzyme Kinetics	
	Enzyme kinetics, Immobilized enzyme systems, Industrial and Pharmaceutical applic	ations
	of enzymes.	
	Cell Growth	
	Batch and Continuous growth, Quantifying cell concentration, growth pattern	s and
	kinetics.	
	Engineering Principles	
	Operating considerations for bioreactors for suspension and immobilized cu	ltures,
	Modifying batch and continuous	
	Genetically Engineered Cells	
	Introduction to mutation, Natural mechanisms for gene transfer and rearrangement,	
	elements of genetic engineering, Genomics, Bioinformatics, Application of recom	binant
	DNA technology.	
Course	1. Understanding of biological basics and bioprocessing.	
Outcomes:	2. Understand the integrated approach of chemical engineering with basic life scien	ces in
	developing processes and products.	
	3. Acquire the knowledge of enzyme catalyzed reaction and inhibition mechanisms	
	4. Acquire knowledge about different types of bioreactor, its industrial applications	and
	scale up criteria.	

Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1														
2						\checkmark								
3														
4														

1. Bailey J. E., Ollis D. F., "Biochemical Engineering Fundamentals", McGraw Hill International Editions, Second Edition, (1986).

2. Primrose S. B., Twyman R. M., "Principles of Gene Manipulation and Genomics", Blackwell Publishing, Seventh Edition, (2006).

3. Shuler M. L., Kargi F., "Bioprocess Engineering", Prentice Hall of India Pvt. Ltd., Second Edition, (2005).

4. James M.Lee- Biochemical Engineering, Prentice Hall, 1992.

5. Dutta R., "Fundamentals of Biochemical Engineering", Springer Publications, (2010).

Course Code	Course Title L T P	,
CHPE-462	Catalysis 3 0 0	
Pre-requisites:	Basic knowledge of physics, chemistry, materials and reaction engineering	
Course	Objective of this course is to deliver a knowledge to the students regarding catalysts.	,
objectives:	preparation, characterization and catalytic reactions.	
Syllabus:	Introduction	
	Introduction to catalysis, adsorption in catalysis, adsorption types and kinetics	
	Heterogeneous catalysis	
	Catalyst types and preparation, precipitation and co-precipitation, solgel method supported catalysts, drying, calcinations and formulation.	,
	Characterization	
	Introduction, fundamentals of solid state chemistry, structure of solids, structure- property relationship and analysis, surface area analysis, pore analysis, XRD analysis thermal analysis, FTIR analysis, catalyst tests	
	Catalytic reactions	
	Reaction mechanism, rate equations, kinetic analysis, internal and external transport catalyst deactivation, assessment of catalyzed reactions, analysis of reaction data	.,
	Homogeneous catalysis	
	Introduction and different types of reactions, mechanism and kinetics, industrial homogeneous processes	1
	Modern catalysts	
	Zeolite catalysts, nanocatalysts, photocatalysts, carbon nanotubes, non-metal and meta oxide catalysts	1
Course	1. Ability to develop an understanding of the catalytic processes	
Outcomes:	2. Understanding of methods of preparation and characterization of the catalysts	
	3. Ability to improve the physical and chemical properties of the catalysts	
	 Understanding of techniques of synthesize of novel catalysts 	

Mapping of cou	rse objectiv	es (CO) &	k progra	m outco	mes (PO)								
Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1	✓					✓	✓	✓	✓		✓			
2	✓							✓	✓	✓	✓			
3	√	✓		✓	✓	✓		✓	✓	✓	✓			
4	\checkmark	\checkmark		✓	\checkmark	✓		✓	~	~	✓			

- 1.
- 2.
- 3.
- Levenspiel O., "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons, Singapore, (1999). Fogler H. S., "Elements of Chemical Reaction Engineering", 3rd Edition, Prentice Hall Inc., (1999). Smith J. M., "Chemical Engineering Kinetics", 3rd Edition, McGraw Hill, (1981). Coulson J. M., Richardson J. F., "Chemical Engineering, Volume 3", Pergamon Press, (1999). Sons, NY, 4. (1990).

Course Code	Course Title L T P										
CHPE-463	Pressure Driven Membrane Separation Processes 3 0 0										
Pre-requisites:	Basic of Mathematics, Transport phenomena										
Course	The objective of the course is to impart knowledge to the students about various membrane										
objectives:	separation processes, covering the fundamentals as well as the recent developments of										
	different processes as well as their industrial applications. Students are exposed to the										
	basic principles, operating parameters, types of membrane used, flux equation, transport										
	mechanism, and applications of membrane-based technologies.										
Syllabus:	Overview of Membrane Science And Technology										
	Definition of Membrane and Membrane Process, Chemical Potential and Osmotic Pressure										
	Relationship Criteria of Desalination, Classification of Membraneand Membrane Based										
	Processes, Membrane Chemistry, Synthesis and Materials										
	Reverse Osmosis and Nano Filtration										
	Introduction and Definition, Theory and Design, Different Membrane Modules, Selected										
	Applications and Economics.										
	Ultra Filtration Introduction and Definition, Theory and Design, Membrane Module and Process										
	Configuration, Applications and Economics.										
	Micro Filtration										
	Introduction and Definition, Theory of Cross Flow Filtration, Dead End Micro Filtration,										
	Applications and Economics. Dialysis, Electodialysis, Pervaporation, Gas Permeation, Emulsion Liquid										
	Membranes										
	Brief Introduction and Applications.										
Course	Introduction and Appreciations. 1. Understand the basic principles for different membrane separation processes										
Outcomes:	 Identify and design the suitable membrane separation technique for intended problem 										
Outcomes.	3. The students are capable of applying various transport models for the calculation of										
	membrane fluxes and the other separation properties for various membrane systems										
	4. Student's are able to identify established membrane separation processes and learn										
	concepts of upcoming membrane separation processes										

Course					Pr	ogram Outcon	nes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	✓										√
2		✓									✓
3		✓								✓	✓
4		✓		√						✓	√

1. Wilson, S "Membrane Handbook", McGraw Hill, London, (2001).

2. Nune S.P. and Peinemann K. V., "Membrane Technology in Chemical Industries", Wiley, New York, (2000).

3. Cheryan M., "Ultra filtration Handbook", Technomic, New York, (1985).

4. Noble, S., "Membrane Separation and Technology, Principles and Applications", Elsevier, (1995).

5. Baker R. W., "Membrane Technology and Applications, Wiley, New York, (2000).

Course Code					rse Title				L	Т	Р
CHPE-464	** -				on and An				3	0	0
Pre-requisites:					athematics						
Course					introduce			• •			
objectives:	-	-		-	esses. The		-				
		s of diffe			alysis, e.g	., chemi	cal analy	ysis, data	anarysis	s, the	mai
Syllabus:		l Princip									
Synabus.		-			ics of In	trumont	Duna	mic Rosn	onse to F	irct or	d
		Order Sys		aracterist	ics of m	suument	s, Dyna	nne Resp		nst ai	lu
		rial Instru		on							
					ocouples,	Resistan	ce, Ther	mometers	, Thermi	stors,	and
	Radiati	on Pyrom	eters. Pr	ressure N	Aeasureme	ent: Man	ometers,	Bourdo	n Gauge	, Bell	ows
					cuum and						
			eters. Pre	essure Pro	obes, Posit	ive Disp	lacement	Type M	eters. Liq	uid L	evel
	Measur										
	Data A	•		~.		_					2
		-		-	ificant Fig		orrelation	n, Regres	ssion, Ai	nalysi	s of
		-		ethods, F	actor Ana	ysis.					
	-	oscopic A	•								
			-		nism of		-	-			
		-		-	ectroscopy		-	-	-		opy,
		-		-	scopy, Rai	nan Spec	etroscopy	, XRD, S	SEM, TEN	М.	
		atograph	-								
			-	-	d Methode		-			-	quid
				UPLC) at	nd Gas Ch	romatogi	aphy, G	C Mass S	pectrosco	py.	
	Therm	al Analys	is								
	Introdu	ction, Th	eory, P	rinciples	and Me	thodolog	y of T	hermo (Gravimet	ric (ΓG),
	Differen	ntial The	rmo Gra	avimetric	(DTG),	Derivati	ve Ther	mal Ana	alysis (D	TA)	and
	Differen	ntial Scan	ning Calo	orimetry	(DSC).						
	Electro	chemical	Analysis	8							
	Introdu	ction, Th	eory, P	rinciples	and Me	thodolog	y of El	lectrograv	vimetric	Anal	ysis,
	Coulon	netry, Pote	ntionmet	try, Volta	mmetry, P	olarogra	phy.				
Course	1. The	e students	will get a	acquainta	nce about	various t	ypes of i	nstrumen	ts for me	asurer	nent
Outcomes:	of t	emperatur	e, pressu	re, condu	ctivity, pH	I, compo	sition of	the given	mixture	etc.	
				n the	knowledg	e of p	principles	for s	pectrosco	opic	and
		omatograp									
					s to exten	d the sk	ills in p	rocedure	s and ins	strume	ental
		hods appl				maludia	of the ind	luctui ol in	atmanaat	~	
Mapping of cours					and data		or the inc	usu tat II	suument	5.	
	se objecti	ives (UU)	« progr	am oute		,					
Course	-	•	2			am Outc			6	40	
Outcomes	1	2	3	4	5	6	7	8	9	10)
1	✓										
2	 ✓ 		1							ļ	
3	✓		\checkmark	✓					ļ		
4		\checkmark									

- Eckman D. P., "Industrial Instrumentation", Wiley Eastern Ltd., (1975). 1.
- Kerk F. W., Rimboi W., Tarapore R., "Instrumentation", Wiley and Sons, (1983). 2.
- Mendham J., Denney R. C., Barnes J. D., Thomas M. J. K., "Vogel's Text Book of Quantitative Chemical 3. Analysis", Pearson Education, Sixth Edition, (2006).
- 4. Willard, Merritt, Dean, Settle, "Instrumental Methods of Analysis", CBS Publisher and Distributors. (1986).
- 5. Haines J., Blackie, "Thermal methods of Analysis, Principles, Application and Problems", Academic and Professional, (1994).

Course Code	Course Title L T P
CHPE-465	Introduction to Colloids and Interfacial Science and Engineering 3 0 0
Pre-requisites:	Fluid mechanics and thermodynamics
Course	Colloids (including nanoparticles) and interfaces (surfaces) are the two most fundamental,
objectives:	widespread and useful nano-entities. Study of colloids and interfaces is highly
U	multidisciplinary in nature combining both the concepts and applications from such diverse
	domains as chemical engineering and manufacturing
Syllabus:	Surface Tension, Adhesion and Capillarity
-	Effects of confinement and finite size; Concepts of surface and interfacial energies and
	tensions; A polar (van der Waals) and polar (acid-base) components of interfacial tensions.
	Young-Laplace equation of capillarity; examples of equilibrium surfaces; multiplicity, etc.
	Free energies of adhesion; Kinetics of capillary and confined flows.
	Nano-scale and Interfacial Forces
	Van der Waals, Electrostatic double layer, Acid-base interactions including hydrophobic
	attraction and hydration pressure.
	Mesoscale Thermodynamics and Applications
	Gibbs treatment of interfaces; concept of excess concentration; variation of interfacial tensions
	with surfactant concentration, Adhesion, wetting, nucleation, flotation, patterning of soft
	material by self - organization and other techniques.
	Stability of Nanoparticle Dispersions
	DLVO and DLVO like theories and kinetics of coagulation plus general principles of
	diffusion in a potential field/Brownian movement. Nanofluidics and Functional Interfaces
	Stability of thin (<100 nm) films; self-organization in confined systems; meso-patterning, Superhydrophobicity, functional coatings, structural colors, nano-adhesives; nanocomposites.
	Supernyurophobienty, functional coatings, structural colors, nano-adnesives, nanocomposites.
Course	1. Understanding of basic nomenclature, concepts and tools of colloid and interface science
Outcomes:	and engineering.
outcomest	2. Ability to understand multi-phase nano-systems; mechanics and thermodynamics on small
	scales.
	3. Understanding of differences between the surface and bulk dominated regimes and
	behavior and exploitation of nano-behavior.
	4. Appreciation of how these concepts and tools translate into a variety of applications from
	processes to materials.

Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1													
2													
3													
4													

1. Paul C. Hiemenz, Marcel Dekker, "Principles of Colloid and Surface Chemistry" 3rd Edition, CRC Press, (2016).

- 2. P. Ghosh, "Colloid and Interface Science", PHI Learning Pvt. Ltd., (2009).
- 3. R. J. Hunter, "Foundations of Colloid Science", Oxford University Press, (2005).
- 4. J. Israelachvili,, "Intermolecular and Surface Forces", Academic Press, London, (1992).
- 5. R. J. Stokes, D. F. Evans, "Fundamentals of Interfacial Engineering", Wiley-VCH, (1997).

Course Co	de Course Title	L	Т	Р
CHPE-46	6 Fluidization Engineering	3	0	0
Pre-requisit				
Course	Fluidization finds extensive application today in Process Industry and also in com			
objectives:	of this course is to make the student aware of fundamentals of Fluidization as	nd und	lerstan	d the
	design aspects of fluidized bed systems.			
Syllabus:	Introduction and Applications			
	Introduction to fluidised bed systems. Fundamentals of fluidisation. Industri			
	fluidised beds - Physical operations. Synthesis reactions, cracking and reforming	g of hy	drocar	bons,
	Gasification, Carbonization, Gas-solid reactions, calcining and clinkering.			
	Gross Behaviour of Fluidised Beds			_
	Gross behaviour of fluidised beds. Minimum and terminal velocities in fluidis			
	fluidisation. Design of distributors. Voidage in fluidised beds. TDH, variation i	n size	distrib	ution
	with height, viscosity and fluidity of fluidised beds, Power consumption.			
	Analysis of Bubble and Emulsion Phase	1	1 6 1	111
	Davidson's model, Frequency measurements, bubbles in ordinary bubbling bed phase. Emulsion phase: Experimental findings. Turnover rate of solids. Bubbl			
	emulsion phase Interchange co-efficient. Residence time distribution and si			
	solids in fluidized bed. Circulating fluidized bed; Pneumatic transport of			
	fluidized bed for physical operations, catalytic reactions and non-catalytic reacti		Desig	;11 01
	Flow Pattern of Gas and Heat & Mass Transfer in Fluidised Beds	5115		
	Flow pattern of gas through fluidized beds. The bubbling bed model for	oas ii	nter cl	iange
	Interpretation of Gas mixing data. Heat and Mass Transfer between fluid and			
	findings on Heat and Mass Transfer. Heat and mass transfer rates from bubbling			
	Heat Transfer between Fluidized Beds and Surfaces - Entrainment & Elutria			
	Heat transfer between fluidized beds and surfaces: Experiment finding the	ories o	of bed	heat
	transfer comparison of theories. Entrainment of or above TDH, model for			
	application of the entrainment model to elutriation.			
Course	1. Ability to understand and solve Fluidization.			
Outcomes:	2. Able to understand the Heat and Mass transfer in fluidized bed system	5		
	3. Able to understand the Fluidization of different phases.			
	 Able to design a fluidized bed system for different applications. 			
	1. The to design a number of a system for anterent applications.			

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	mes (PO)									
Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1	\checkmark										\checkmark			
2														
3		\checkmark								\checkmark	\checkmark			
4		\checkmark			\checkmark						\checkmark			

Diazo Kunii, Octave Levenspiel, "Fluidization Engineering", 2nd Ed, Wiley(1991).
 M. Rhodes, "Introduction to Particle Technology", 2nd Ed., Wiley (2008).
 L. G. Gibilaro, "Fluidization - Dynamics", Butterworth - Heinemann (2001).

4. J.F. Davidson, D. Harrison, "Fluidized Particle", Cambridge University Press (1963).

Course Code	Course Title L T P									
CHPE-467	Fertilizer Technology 3 0 0									
Pre-requisites:	Chemical Technology									
Course	The course will provide the knowledge on various types of fertilizers, their method									
objectives:	manufacture, materials of construction, economics and corrosion problems of the fertilizer									
	industry.									
Syllabus:	Introduction									
	Elements required for plants growth, classification of fertilizers, compound, complex &									
	bulk blended fertilizers. N-P-K values and calculations.									
	Nitrogenous Fertilizers									
	Manufacturing Processes for Ammonia, effects of various factors on the process.									
	Manufacture of ammonium sulphate, ammonium chloride, ammonium phosphate,									
	Ammonium nitrate, nitric acid, Urea etc. Economics & other strategies, Materials of									
	construction and corrosion problems.									
	Phosphatic fertilizers									
	Calculation of percentage tricalcium phosphate of lime in phosphatic rock. Manufacture of									
	triple super phosphate and single super phosphate, Nitrophosphate, Sodium phosphate,									
	Phosphoric acid and other phosphatic fertilizers.									
	Potash Fertilizers									
	Manufacture of potash fertilizers like potassium sulphate, potassium chloride etc.									
	Other Fertilizers									
	Mixed fertilizers and granulated mixtures; bio fertilizers, nutrients, secondary nutrients and									
	micro nutrients; fluid fertilizers, controlled release fertilizers.									
Course	1. Ability to understand the importance of fertilizers.									
Outcomes:	2. Able to know different methods of production of various fertilizers.									
	3. Able to understand the various engineering problems occurring in fertilizer industries.									
	4. Ability to get knowledge on materials of construction and corrosion problems.									

4. Admity to	get knowledge	on materials of	construction a	nd corrosion	broblems.	

Mapping of course objectives (CO) & program outcomes (PO)											
Course					Progra	am Outc	omes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2			\checkmark								
3			\checkmark								
4											

- 1.
- Dryden C E, "Outlines of Chemical Technology", East –West Press Pvt. Ltd., New Delhi, 2nd Edition (1973) Austin G T, "Shreve's Chemical Process Industries", McGraw Hill Book Company, New Delhi 5th Edition (1986) 2. Chemical Engineering Education Development Centre- "Chemical Technology I, II, III, IV, Manual of Chemical
- 3. Technology, Indian Institute of Technology, Madras".
- Shukla S D and Pandey G N, "A text book of Chemical Technology Vol I", Vikas Publishing House Pvt. Ltd., New 4. Delhi
- Shukla S D and Pandey G N, "A text book of Chemical Technology Vol II", Vikas Publishing House Pvt. Ltd., 5. New Delhi

Course Code	Course Title L	Т	Р								
CHPE-468	Biorefineries and Bioproducts Engineering 3	0	0								
Pre-requisites:	None										
Course	The course will provide the fundamental basis of bioproducts bioengineering	based	l on								
objectives:	the biorefinery concept, aimed to form the students on green chemical strategi	es for	the								
-	processing of biomass and waste into valuable biomaterials, biochemicals and biofuels.										
Syllabus:	Introduction:										
	Introduction and basic concepts: Green Chemistry, biorefineries, biofuels, Bi	oprod	ucts								
	and platform molecules .										
	Bioproducts from biomass:										
	Production of Biomaterials from Biomass, Chemicals from Biomass & waste	, Biof	uels								
	from Biomass & Waste.										
	Biomass Conversion processes:										
	Biochemical conversion processes, Thermochemical conversion processes-Combustion,										
	gasification, pyrolysis, hydrothermal liquefaction and Integrated hybrid conversion										
	processes.										
	Biorefinery:										
	Design of a biorefinery by incorporating various unit operations, mass and energy balance,										
	sustainability aspects using Aspen plus and other simulation packages. Examples of										
	biorefinery concepts.										
Course	1. Understanding the possibilities of biorefineries in a future scenario with	out fo	ossil								
Outcomes:	fuels.										
	2. Understanding Green Chemical approaches and alternative processes to be	oprod	ucts								
	from biomass and waste.										
	3. Ability to identify key pathways for sustainable processing of feedstocks.										
	4. Knowing basic concepts of Biorefineries and Green Chemical met application to present industrial processes.	hods	and								

Mapping of cou	urse object	ives (CO)	& progr	am outc	omes (PO						
Course		Program Outcomes									
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											

- 1. Kamm, B., Gruber, P.R., and Kamm, M. (2006). Biorefineries Industrial Processes and Products. WILEY-VCH.
- 2. Brown, R.C. (Ed.) Thermochemical processing of biomass into fuels, chemicals and power, Wiley, 2011.
- 3. Clark, J., Deswarte, F. (Ed.) Introduction to chemicals from biomass, John Wiley and Sons, U.K., 2008.
- 4. Basu, Prabir. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2013.
- 5. Bergeron, C., Carrier, D.J., and Ramaswamy, S. (2012). Biorefinery Co-Products. Wiley & Sons, Ltd. ISBN: 978-0-470-97357-8.

Course Code					<u>PEN ELE</u> urse Title				I	T T	Р	
CHOE-401			Н		bon Engi						0	
Pre-requisites:	Basic ki	nowledge					nistry and	chemica				
Course Information:	hydroca various regardir	arbon eng rbons, the reactions ng various ous petrol	eir struct involving properti	ure prese g petroleu es, standa	ent in petr um refinin	roleum cr	ude. Also ons. This	o deals v subject a	vith the lso bring	chemistr s knowl	y of edge	
Syllabus:	Scope a	nd Purp	ose of Re	fining								
		and India					g industry	y in India	practice	and		
		ts, Separa			on proces	ses etc.						
	Refinery Distillation Processes Desalting, Process description of typical crude distillation, Fractional distillation, Vacuum											
	distillati	ion, Flood	ling, Wee	ping, En							1	
	ASTM, TBP EFV Distillation etc. Fuel Refining and Lube Refining											
		g, Coking		-	vlation. Is	omerisatio	on. Polvn	nerization	n, and Sw	reetening	7	
		vent extra					•		-,	2	>	
		processin		6,	1	I	0					
		- racking, l	-	ating, Hy	dro desul	phurizatio	on					
	•	Gas sepa	•	0.		•						
	Principa	al of separ	ation, Ty	pes of se	parators,	their desc	ription. V	arious co	ontrol and	l vessel		
	internal	s, Oil and	gas grav	itational	separator,	Vertical	two and the	hree phas	se separat	or,		
		tal three j	· •									
		Monitor	-									
	-	vity, Flas	-	-	-		-					
	viscosity, Pour point, Freezing point, octane number, Cetane number, Viscosity index, Diesel index, Calorific value, Burning test 24 hours, Characterization factor, Cloud Point, Vapour											
	index, Calorific value, Burning test 24 hours, Characterization factor, Cloud Point, Vapour											
	lock index, Carbon hydrogen ratio, Calculated ignition index, Carbon aromaticity index,											
	U.O.P Characterization factor, Conrad son carbon residue, Water and sediment content. Storage of Petroleum Products											
	0				1. (1	~						
		cation of i		-			-		-			
		k, Semi b		-	-	ss, Breau	ing losse	s, Hazaro	is and no	n-nazaro	15	
	area, and underground storage tank etc. Transportation											
	Transportation Transportation of oil and natural gas by rail, road and pipeline, Various type of pipelines,											
	Pipe line automation, Lease Automatic Custody Transfer units, SCADA, Batch transport of petroleum products, Multiproduct pipelines, Product handling, Pumping cycle, Interface,											
	petroleum products, Multiproduct pipelines, Product handling, Pumping cycle, Interface, Problems in waxy crude, Role of flow behaviour etc.											
Course		dent will					f hydrocy	arbon ba	sed on th	eir stru	ture	
Outcomes:		sent in pe			y unicici	n types o	i iiyuioca	aroon da		cii suu	luic	
Outcomes.	-	n knowle			nemistry (of specific	reaction	that too	k nlace i	n netrol	eum	
		ning oper	-		iennistry (or speen	e reaction	i indi too	k place	ii peuoi	cum	
		dents will		out the y	various or	perations	take plac	e in refi	neries to	convert	raw	
		de into va				214010110	Piuc Piuc			5511, 0 11		
		dents will			-	knowledø	e to analy	zed and	solve the	enginee	ring	
		blems inv		-		-				0	0	
Iapping of cours	_			-								
Course	e objecti	(00)	a progra			y am Outc	omes					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1	-	-		-		 ✓		 ✓	, , ,	10	1 11	
	✓	✓	✓		 ✓ 			• •	· √	✓	√	
2	▼ ✓	▼ ✓	▼ ✓	✓	▼ ✓			▼ √	▼ ✓	▼ ✓	▼ ▼	
-	V	./	· √	✓	I V	1	1	✓	I V	i 🗸	· ·	
3 4	· •	• ✓	· •	✓			 ✓ 	· ✓	-	·	· ·	

- Nelson W. L., "Petroleum Refinery Engineering", Mc-Graw Hill Book Co., (1985).
 Watkins R. N., "Petroleum Refinery Distillation", Gulf Publishing Co.
- Watkins R. M., "Fetroleum Refining Distingtion", Our Fublishing Co.
 Gary J. H., Handwork G. E., "Petroleum Refining Technology and Economics", Marcel Dekker, Inc., (2001).
 Jones D. S. J., "Elements of Petroleum processing", John Wiley &Sons, (1995).
 Waquier J. P., "Petroleum Refining" Vol. I & II, Technip, (1995)

Course Code	Course Title	L	Т	Р
CHOE-402	Energy Management and Audit	3	0	0
Pre-requisites:	None			
Course Objectives:	The course aims at understanding the basic concepts of energy man			
	monitoring and optimization of energy-use. The processes and param			
	an Energy Audit are also included. The course also aims to study the			
	human project resource management, relevant to energy consumpt			
	course is meant to get familiar with techniques and tools for energy	monit	oring	and
	targeting.			
Syllabus:	Energy Scenario	_		
	Commercial and Non-Commercial Energy, Primary Energy Resource			
	Energy Production, Energy Needs of Growing Economy, Long Term			
	Energy Pricing, Energy Sector Reforms, Energy and Environment			
	Climate Change, Energy Security, Energy Conservation and its Imp			
	Strategy for the Future, Energy Conservation Act-2001 and its	Feature	es. K	yoto
	Protocol. Global warming.			
	Energy Management & Audit			
	Definition, Types of energy audit, Energy management (audit) approad			
	energy costs, Bench marking, Energy performance, matching			
	requirement, Maximizing system efficiencies, Optimizing the			
	requirements, Fuel and energy substitution, Energy audit instruments,	Energy	and	Cost
	Indices.			
	Energy Action Planning			
	Key elements, Force field analysis, Energy policy purpose, perspe			
	Formulation, Ratification, Organizing - location of energy ma			
	management support, Managerial function, Roles and responsibi	lities of	of en	ergy
	manager, Accountability.			
	Motivating-Motivation of Employees			
	Information system designing barriers, Strategies; Marketing and			
	training and planning. Financial Management, Investment-need, Appra			
	Financial analysis techniques- Simple pay-back period, Return on			
	present value, Internal rate of return, Cash flows, Risk and sent	sitivity	anal	ysis;
	Financing options, Energy performance contracts and role of ESCOs.			
	Project Management			
	Definition and scope of project, Technical design, Financin			
	Implementation and performance monitoring. Implementation			
	management, Planning Budget, Procurement Procedures, Construction	on, Mea	asurer	nent
	& Verification.			
	Energy Monitoring and Targeting			
	Defining monitoring & targeting, Elements of monitoring & targ			
	information-analysis, Monitoring methods such as Sankey-Diagrams			
	Bar-diagrams, Techniques of energy consumption, Production, Cur	nulativ	e sun	n of
	differences (CUSUM).			
Course Outcomes:	1. To understand the basic concepts of energy management, energy	monit	oring	and
	optimization of energy-use.			
	2. To study the processes and parameters involved in an Energy Aud			
	3. To study the human and non-human project resource managem	nent, re	elevar	nt to
	energy consumption.			
	4. To get familiar with techniques and tools for energy monitoring ar			

Course		Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1						\checkmark						
2						\checkmark						
3					\checkmark			\checkmark				
4												

- 1. Capehart, Barney L., Turner W. C., Kennedy W. J., "Guide to Energy Management", Third Edition, Fairmont Press, Atlanta, GA, (2000).
- 2. Thumann A., Mehta D. P., "Handbook of Energy Engineering", 4th Edition Lilburn, GA: Fairmont Press, (1997).
- 3. Loftness, Robert L. "Energy Handbook." 2nd Edition, New York: Van Nostrand Reinhold Co., (1984).
- 4. Turner W., "Energy Management Handbook", John Wiley &. Sons, New York, (1982).
- 5. Lapedes, D. N., "Encyclopaedia of Energy", McGraw-Hill, New York, (1976).

Course Co	de				Course	Title				L	Т	Р
CHOE-40	13		P	olymer	Science a	nd Engii	neering			3	0	0
Pre-requisites:	. En	gineering	chemistr	y and ph	iysics							
Course	Th	e course a	ims at u	nderstan	ding the b	oasic con	cepts of	polymer	structure	e, prop	erties	and
Objectives:	enş	gineering,	the man	ufacturir	ng process	ses and p	process k	inetics of	of differe	nt poly	ymers	, the
	dif	ferent pro	cessing	techniqu	es for po	lymers fo	or applic	ations in	n fibres,	plastic	s, rul	bber,
	sur	face coati	ings and	adhesive	es, and to	get fam	iliar witł	n comme	on testing	g and e	evalu	ation
		ethods for		ic materi	als.							
Syllabus:		sic Conce	-									
	ado	oncepts an dition, cor	ndensatio	on, step-g	growth an	d chain-	growth p	olymeri	zation, n	nolecul	lar w	eight
	we	estimation: Number and weight average, sedimentation and viscosity average molecular weights, molecular weight and degree of polymerization, polydispersity, significance of molecular weight.										
	Polymerization Processes											
		ilk, solutio			suspensi	on polyn	nerizatio	n comp	arison of	² polvr	neriz	ation
		ocesses.	, cina	bioli una	suspensi	on porju	nonzano	ii, comp	unson of	porgr	110112	ation
		Polymerization Kinetics Chemistry of step reaction polymerization, mechanism and kinetics of poly condensa										
	reactions, relationship between average functionality, extent of reaction and degree											
	pol	lymerizati	on, mec	hanism a	and kinet	ics of fr	ee- radic	al chair	n polyme	rizatio	n, ki	netic
	cha	ain length,	chain tr	ansfer re	actions, Ii	nhibition	and retain	rdation				
	Sy	nthetic Fi	bers									
Types of Fibers, spinning techniques, manufacturing technology and app												
		ferent typ		pers: Cel	lulosic fil	pers, poly	yamides,	acrylics	s, vinyls	and vi	nylid	ines,
		orocarbon	IS.									
		astics		_								
		anufacturi			ind applic	cations o	of differe	ent type	s of pla	stics:	Polye	ester,
		lyethylene	, Phenol	ics.								
		ibbers		1		. 1	1.1	a	1.1	CD	D	1.1
		ructure, p				natural	rubber	syntheti	c rubber	s: 5B	R, ru	lbber
		mpounding										
		sting and				Coftoning	Tompor	oturo too	ta Malt f	low In	dav	
		ysical test			ling of fur							tion
Course Outcon				ring tech		idamenta	us or por	ymers, u	lien suuc	ture, p	Toper	ues
Course Outcon					lymerizati	on nroce	sses and	nrocess	kinetics			
					t process					re nla	stice	and
	•	rubbe		guineren	n process	ucenniqu	es and ap	pheatio		15, più	sues	and
	2			various	testing an	d evaluat	ion meth	ods for	nolvmeri	c mate	rials	
Mapping of cou					U					- mut	- 1010.	
	se vaicoi		æ prog			ram Out	toomog					
•• •					rrog	i ani Ull	comes					
Course	1		2	4	5		-	0	0	10		11
Course Outcomes	1	2	3	4	5	6	7	8	9	10		11
Course Outcomes 1		2 √	3	4 √		6 √	7	8	9			11
Course Outcomes 1 2	V	,	3	1		6 √ √	7	8	9			
Course Outcomes 1		,	3	1		6 √	7	8	9			11

- 1. Gowariker V. R., Viswanathan N. V., Sreedhar J., "Polymer Science", New Age International Publishers, 37, (1996).
- 2. Billmeyer F. W., "Text Book of Polymer Science", Wiley Tappers, (1994).
- 3. Ghosh P., "Polymer Science and Technology of Plastics and Rubber", Tata McGraw Hill, (2001).
- 4. Gupta R. K., Kumar A., "Fundamentals of Polymer Engineering", 2nd Edition, Marcel Dekkar, (2003).
- 5. Fried J. R. "Polymer Science and Technology", PHI Learning, (2008).

Course Code	Course Title	L	Т	Р								
CHOE-404	Industrial Safety and Hazards Management	3	0	0								
Pre-requisites:	Transport Phenomena, Mechanical Unit Operation, Process Control											
Course	The objective of the course is to impart knowledge to the students about source	ce of	`haza	rds								
objectives:	and control techniques. The course briefs the basics of fire, explosion and tox	ic di	spers	ion								
	modeling, and methods of risk assessment.											
Syllabus:	Introduction											
	Concept of Loss Prevention, Acceptable Risks, Accident and Loss Statistics, Nature Of											
	Accident Process, Inherent Safety.											
	Toxicology											
	Dose vs. Response, Effects of Toxicant on Human, Toxicants Entry Route, Models for											
	Dose and Response Curves, TLV And PEL											
	Industrial Hygiene											
	Identification, Material Safety Data Sheets, Industrial Hygiene Evaluation, an	nd co	ntrol									
	Basics of Fires and Explosion											
	Fire Triangle, Definitions, Flammability Characteristics of Liquid and Vapors, LOC and											
	Inerting, Types of Explosions, Designs for Fire Prevention and Control											
	Hazard Identification											
	Hazard Survey, Checklist, HAZOP, Safety Reviews, what if analysis											
	Construction, Operation and Process Hazards											
	Safety aspect in construction, Operations and Processes, Runaway Reactions,	uns	table									
	products, Safety in Erection and Commissioning											
	Risk Assessment											
	Probability Theory, Event Tree, Fault Tree, QRA and LOPA											
	Accident Investigations and Case Histories											
	Bhopal Gas Tragedy, Fixborough Disaster, Fukushima Daiichi Explosion, IO	CL .	Jaipur									
	Fire											
Course	1. The students are able to understand the concept of loss prevention and h	nazai	rd mo	dels								
Outcomes:	such as pool fire, fireball, toxic dispersion etc.											
	2. The students learn to exhibit the skill of performing risk assessment such	as co	onduc	ting								
	Dow's fire and Explosion Index for the real plant unit											
	3. Able to design the fire prevention and control systems											
	4. Able to calculate the accident and loss statics for the real plant unit											

Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1	✓					✓					✓
2	✓	✓				✓					✓
3		✓		✓		✓					√
4		\checkmark				✓					✓

Crowl D. A., Louvar J. F., "Chemical Process Safety Fundamentals with applications", 2nd Edition, Prentice 1. Hall, NJ (2002),

- Coulson J. M., Richardson J. F., "Chemical Engineering", 2nd Edition, Vol. 6, Pergamon Press (1999). Dow's Chemical Exposure Index Guide, Dow Chemical Company, New York, (1993). 2.
- 3.
- Lees F. P., Loss Prevention in Process Industries, 2nd Edition, Butterworth, London, (1996). 4.
- 5. Wells G. L, Safety in Process Plant Design, George Godwin Ltd., New York, (1980).

Course Code	Course Title L	Т	Р									
CHOE-405	Environmental Engineering 3	0	0									
Pre-requisites:	Knowledge on Environmental Science											
Course	This course aims at developing the students the environmental impacts of air,	water	and									
objectives:	solid pollution.											
U	This course also aims to develop the basic knowledge about the biomedical and l	nazaro	lous									
	and waste management.											
Syllabus:	Air Pollution Control Engineering											
	Introduction, Definition, Sources, Characteristics and Perspective of Air Pollutant	s, Eff	ects									
	of Air Pollution on Biodiversity, Economic Effects of Air Pollution, Air Quality and											
	Emission Standards, Engineering Systems of Control of Air Pollution by Equip											
	by Process Changes.											
	Water Pollution Control Engineering											
	Introduction, Definition, Sources, Characteristics and Perspective of W											
	Wastewater Pollutants, Effects of Water Pollution on Biodiversity, Economic I											
	Water Pollution, Water Quality and Emission Standards, Physical, Chemical and											
	Biological Parameters, Engineering Systems of Control of Water and Wastewater											
	by Primary, Secondary and Advance Treatment.											
	Solid Waste Management											
	Introduction, Definition, Sources, Characteristics and Perspective of Solid Waste,											
	Generation, Separation, Handling, Storage and Transportation of Solid Waste, Physical,											
	Chemical and Biological Treatment of Solid Waste.											
	Biomedical and Hazardous Waste Management											
	Introduction, Definition, Sources, Characteristics and Perspective of Biomed											
	Hazardous Waste, Handling, Storage, Transportation of Biomedical and Hazardous Waste,											
~	Physical, Chemical and Biological Treatment of Biomedical and Hazardous Wast											
Course	1. The students are able to understand the impact of air, water and solid pollution	on eff	ects									
Outcomes:	on the environment.		1									
	2. The students are able to design various engineering systems of control of air,	water	and									
	solid waste pollution by equipment and by process changes.		1.1									
	3. The students gain the knowledge of different standards for the measure and only a standard solid measure and only a standard solid measure and solid meas	contro	л от									
	air, water and solid waste pollution in the environment.		mtol									
	4. The students exhibit the skill to solve the problems related to the envir	onme	ntai									
	engineering.											

Mapping of cou	rse objecti	ves (CO)	& progr	am outco	omes (PO))					
Course		Program Outcomes									
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2								\checkmark			
3						\checkmark			\checkmark		
4									\checkmark		

- 1. Rao M. N., Rao H. V. N., "Air Pollution", Tata McGraw Hill Publishing Company Ltd., (2005).
- 2. Peavy H. S., Rowe D. R., Tchobanoglous G., "Environmental Engineering", McGraw Hill Book Company, International Edition, (1985).
- 3. Metcalf and Eddy, Inc., "Wastewater Engineering-Treatment and Reuse", Tata McGraw Hill Publishing Company Ltd., Fourth Edition, (2004).
- 4. Rittmann B. E., McCarty P. L., "Environmental Biotechnology: Principles and Application", McGraw Hill International Editions, First Edition, (2001).
- 5. Kiely G., "Environmental Engineering", Tata McGraw Hill Publishing Company Ltd, Special Indian Edition, (2007).

Course Code	Course Title L T P									
CHOE-406	Environment Impact Assessment 3 0 0									
Pre-requisites:	Knowledge on Environmental Science									
Course	The objective of the course is to introduce students to the process of Environmental									
objectives:	Impact Assessment (EIA) and the procedures that are followed in environmental									
	management in industry.									
	Students are introduced with some of the basic environmental assessment techniques									
	Through case studies, students will learn to present and explain the components and									
	decision making processes involved in environmental assessment.									
	Students will create a visual representation of data that comprises an environmental									
	impact statement									
Syllabus:	Environment Impact Assessment (EIA)									
	Concept of EIA, Origin of EIA, Procedure of EIA, Evaluation Methodology for EIA,									
	Scope Studies, Preparation and Review of Environment Impact Statement (EIS).									
	Life Cycle Assessment (LCA)									
	Introduction of LCA, Importance of LCA, Environmental Parameters in LCA, Documentation in LCA.									
	Waste Minimization									
	Introduction, Types of Waste, Benefits of Waste Minimization, Elements of Waste Minimization Programme, Integrated System for Waste Management.									
	Environmental Audit (EA)									
	Concept of EA, Necessity and Importance of EA, Audit Items, Audit Procedures.									
	Environmental Management System (EMS)									
	Introduction, Terminology and Certification, Environmental Standards, the International									
	Standard Organization (ISO), the ISO 9000 and the ISO 14000 Family of Standards,									
	Guides and Technical Reports, ISO 14001 Certification as a Tool for Sustainable									
	Development									
	Case Studies									
	Discussion and analysis of various Case studies of environmental engineering projects.									
Course	1. Ability to understand the current EIA methods and the techniques and tools used									
Outcomes:	2. Ability to understand the current assessment methods and legislation									
	3. Ability to understand the current environmental monitoring systems									
	4. Ability to apply knowledge acquired to the process of environmental impact modeling									
	and prediction as a design tool with application to a number of case studies									

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	mes (PO))					
Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											

1. Anjaneyulu Y., "Environment Impact Assessment Methodologies", B S Publications, (2002).

Canter L. W., "Environment Impact Assessment", McGraw Hill, Second Edition, (2005). 2.

Garg S. K., Garg R., Garg R., "Ecological and Environmental Studies", Khanna Publishers, First Edition, 3. (2006).

Santra S. C., "Environmental Science", New Central Book Agency (P) Ltd., Second Edition, (2006). Uberoi N. K., "Environmental Management", Excel Books, Second Edition, (2006). 4.

5.

Course Code	Course Title L T	P
CHOE- 407	Oil and Natural Gas Economics 3 0	0
Pre-requisites:	Basic knowledge of crude and natural gas, petrochemicals and petroleum refinery.	.1
Course	Oil and natural gas economics is the subject which deals with the knowledge regarding	the
objectives:	oil and gas sources, demand, supply and economic status nationally and globally.	
Syllabus:	Role of Oil and Gas in the World Economy	•••
	Importance of oil and gas, oil and gas reserves, supply and demand, specific features of and gas Industries.	01l
	Oil and Gas Production and Development	
	Exploration for oil and gas, economic cost of finding oil and gas, contractual arrangeme	ents
	for exploration of oil and gas, development of oil and gas Fields, economics of oil and g	
	field development, technological innovations in exploration and drilling etc.	-
	Transportation and Processing of Oil and Natural Gas	
	Economics and technologies for transportation, refinery economics and refin	ing
	technologies, gas processing technologies and economics, optimization techniques	for
	transportation and processing etc.	
	Organization of Oil and Gas Industries	
	Evolution of the oil Industry, domination by multinationals OPEC era, rec	
	developments, evolution of the gas Industry, gas contracts, deregulation and restructure	ing
	in oil and gas Industries	
	Pricing of Oil and Gas	
	Economic theory of exhaustible resources, analysis of oil pricing by multinatio	
	companies, OPEC pricing policy, net-back pricing and parity pricing, pricing in	
	competitive market, rent and rent sharing, analysis of international pricing of oil and gas	
	Domestic Pricing Issues in Oil and Natural gas	
	Objectives for oil and gas pricing at the national level, pricing mechanisms and polici tax and subsidies etc.	les,
	Trade and Markets for Oil and Natural Gas	
	International oil and gas markets, new trading mechanisms, trading in a deregula	tad
	industry etc.	icu
	Issues Facing Oil and Gas Industries	
	Externalities, financing needs, geo-political concerns	
Course	1. The students develop the knowledge base about the development of oil and gas fie	lds
Outcomes:	and technological innovations in exploration and drilling etc.	
	 Students will learn the role of oil and natural gas in economic growth of the nation. 	
	 Students will learn the fole of on and natural gas in economic growin of the nation. Students will have knowledge of production, demand and supply of oil and natural g 	as
	4. The students are able to understand the refinery economics and refining technologi	
	gas processing technologies and economics, optimization techniques for transportat	
	and processing etc.	1011
	and processing etc.	

Course		Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1	✓	\checkmark			✓	✓		✓	✓	✓	√	
2					\checkmark		✓				✓	
3		\checkmark						✓	✓	✓	√	
4	✓	\checkmark		✓	\checkmark	✓		✓	✓	✓	✓	

- 1. J. H. Gary, G. E. Handwork and M. J. Kaiser, Petroleum Refining: Technology and Economics, Fifth Edition, CPR Press, Taylor and Francis Group, (2007).
- 2. Conaway C.F., "The Petroleum Industry: A Non- Technical Guide", Penn Well, (1999).
- 3. Berger B. D., "Modern Petroleum: A Basic Primer of the Industry", (1992).
- 4. Tussing A., Tippee B., "The Natural Gas Industry: Evolution, Structure and Economics", Penn Well, (1995).
- 5. Julius D., Mashaekhi, A., "The Economics of Natural Gas: Pricing, Planning and Policy", OIES, (1990).

CHOE-408 New and Renewable Energy Resources 3 0 0 Pre-requisites: Course will be accessible to most students who have completed their first two years of study at an Undergraduate level. Course This course covers in a comprehensive manner the operating principle of a range of non-conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation	Course Code	Course Title L T P
study at an Undergraduate level. Course objectives: This course covers in a comprehensive manner the operating principle of a range of non- conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating. Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Pote		
Course objectives: This course covers in a comprehensive manner the operating principle of a range of non- conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, min hydel power plants and their economics. Course Ou	Pre-requisites:	
objectives: conventional energy resources, materials used, characterization, and key performance characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Occan and Tidal Energy Ottec plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, min		
 characteristics. The technologies to be studied will include Solar energy, Wind, Fuel cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.		
 cells, biomass, and Geothermal conversion. The advantages and limitations of these technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. 1. Create awareness among students about Non-Conventional sources of energy resources, the fundamental concepts and their application. 3. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 4. Equip the students with knowledge and understanding of various possible	objectives:	
 technologies in comparison to conventional sources of energy will also be studied. Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Cheate awareness among students about Non-Conventional sources of energy technologies The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
Syllabus: Introduction Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, min hydel power plants and their economics. 1. Create awareness among students about Non-Conventional sources of energy resources, the fundamental concepts and their application. 2. The students acquire sufficient knowledge about various types		
 Global and Indian scenario, Sources, Energy conservation, Types of NCES with applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 	G H I	
 applications, Role and development of new renewable energy sources. Solar Energy Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible	Syllabus:	
Solar EnergyIntroduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
Introduction, Solar radiation data, Instruments for measuring solar radiations, Flat plat and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used.		
 and concentrating collectors, Classification of concentrating collectors, Advanced collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
 collectors, Different methods of solar energy storage, Solar ponds, Solar applications: Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
Solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length.Geothermal Energy Resources, Types of wells, Methods of harnessing the energy.Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills.Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
 conversion. Solar Calculations: Angles associated with solar rays and the collector surface, Local apparent time, Soar day length. Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Otreate awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
surface, Local apparent time, Soar day length.Geothermal Energy Resources, Types of wells, Methods of harnessing the energy.Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills.Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, 		
Geothermal Energy Resources, Types of wells, Methods of harnessing the energy. Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
Resources, Types of wells, Methods of harnessing the energy.Wind EnergySources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills.Biomass and BiofuelsRecycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status.Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics.Course Outcomes:1. Create awareness among students about Non-Conventional sources of energy technologies2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible		
 Wind Energy Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: 1. Create awareness among students about Non-Conventional sources of energy technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible 3. The students with knowledge and understanding of various possible 3. The students with knowledge and understanding of various possible 3. Equip the students with knowledge and understanding of various possible 3. Students with knowledge and understanding of various possible 3. Equip the students with knowledge and understanding of various possible 3. Students with knowledge and understanding of various possible 3. The students with knowledge and understanding of various possible 3. The students with knowledge and understanding of various possible 4. Equip the students with knowledge and understanding of various possible 3. The s		
 Sources and potentials, Horizontal and vertical axis wind mills, Wind regime analysis and evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Otreate awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
 evaluation of wind mills. Biomass and Biofuels Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
 Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
 digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Outcomes: Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		Biomass and Biofuels
 for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel, ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Otreate awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		Recycling of agricultural waste, Anaerobic/aerobic digestion and types of biogas
 ethanol, biobutanol etc. and their production and present status. Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Otean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course Oteate awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		digesters, Gas yield and combustion characteristics of bio gas, Design of biogas system
Ocean and Tidal Energy OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course 1. Create awareness among students about Non-Conventional sources of energy technologies Outcomes: 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		for heating, Lighting and running IC engines. Introduction to Biofuels such as biodiesel,
OTEC, Settling of OTEC plants, Thermodynamic cycles, Tidal Energy: Potential and conversion techniques, mini hydel power plants and their economics. Course 1. Create awareness among students about Non-Conventional sources of energy technologies Outcomes: 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		ethanol, biobutanol etc. and their production and present status.
 conversion techniques, mini hydel power plants and their economics. Course Create awareness among students about Non-Conventional sources of energy technologies The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
Course 1. Create awareness among students about Non-Conventional sources of energy technologies Outcomes: 1. Create awareness among students about Non-Conventional sources of energy technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
Outcomes: technologies 2. The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. 3. The students also develop an understanding of and design related concepts of equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
 The students acquire sufficient knowledge about various types of renewable energy resources, the fundamental concepts and their application. The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
resources, the fundamental concepts and their application.3. The students also develop an understanding of and design related concepts of equipment and instruments used.4. Equip the students with knowledge and understanding of various possible	Outcomes:	•
 The students also develop an understanding of and design related concepts of equipment and instruments used. Equip the students with knowledge and understanding of various possible 		
equipment and instruments used. 4. Equip the students with knowledge and understanding of various possible		
4. Equip the students with knowledge and understanding of various possible		
mechanisms about renewable energy projects		
		mechanisms about renewable energy projects

Mapping of cou	Mapping of course objectives (CO) & program outcomes (PO)												
Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1			\checkmark										
2											\checkmark		
3				\checkmark		\checkmark							
4													

- 1. Rai G. D., "Non-conventional Energy Sources", Standard Publishers Distributors, (2007).
- 2. Sukhatme K., Sukhatme S. P., Solar Energy: Principles of Thermal Collection and Storage, 2nd Edition, Tata McGraw Hill, (1996).
- 3. Mittal K. M., "Non-conventional Energy System", Wheeler Publishing Co. Ltd, (1997).
- 4. Rao S., Parulekar B. B., "Energy Technology", Khanna Publishers, (1995).
- 5. Desai A. V., "Non-convetional Energy", Wiley Eastern, (1990).

Course Code	Course Title L T I	P
CHOE-409	Corrosion Engineering 3 0	0
Pre-requisites:	Basics course on material science and chemistry	
Course	This course provides a foundation for understanding the forms of corrosion, the	ne
objectives:	mechanisms of corrosion, electrochemical methods to study and measure corrosion, an	nd
	the principles and methods leading to mitigation of corrosion problems that might occur i engineering practice.	in
Syllabus:	 Basic Concepts Definition and importance, impact on economy, Electrochemical reactions, Corrosion rat and its determination, Theories of corrosion, Polarization, Passivity, Metallurgical aspects Forms of Corrosion Galvanic corrosion, crevice corrosion, pitting, intergranular corrosion, erosion corrosion flow-accelerated corrosion, stress corrosion cracking, hydrogen induced cracking,Microbiologically induced corrosion, underground corrosion, high-temperature corrosion, corrosion fatigue and some case studies. Corrosion Testing Specimen preparation, exposure tests, open corrosion potential, linear polarization, Taf slopes, corrosion current, slow-strain-rate tests, AC impedance and Commercial corrosion probes. 	s. on, ed ire fel
	Prevention and Control of Corrosion	
	Cathodic protection, Sacrificial anodic protection, Modification of environment, Coatings	
	and inhibitors, Material selection and design.	
Course	1. Understanding the importance and mechanisms of corrosion	
Outcomes:	2. Understanding the aspects of electrochemistry relevant to corrosion rate measurement	
	3. Ability to understand the concepts of various types of corrosion and its testing.	
	4. Ability to select viable techniques for corrosion prevention.	

Course	rse objectives (CO) & program outcomes (PO) Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1					\checkmark							
2					\checkmark							
3			\checkmark		\checkmark							
4			\checkmark									

1. Fontana, M.G., Corrosion Engineering, Tata McGraw-Hill (2008). 3rd ed.

2. Denny A. Jones, Principles and Prevention of Corrosion, 2nd Edition, Pearson-Prentice Hall, 2005.

3. Roberge P R, Corrosion Engineering, McGraw Hill, New York.

4. Uhling H H and Revie R W, Corrosion Control, John Wiley & sons. INC,.

5. Trethewy& Chamberlain, Corrosion for Science and Engineering, Longman Sc& Tech; 2nd revised edition edition, 1996

Course Code	Course Title	L	Т	Р							
CHOE-410	Biorefinery and Bioproducts Engineering	3	0	0							
Pre-requisites:	None										
Course	The course will provide the fundamental basis of bioproducts bioengineer	ing l	based	l on							
objectives:	the biorefinery concept, aimed to form the students on green chemical strat	egie	s for	the							
-	processing of biomass and waste into valuable biomaterials, biochemicals and	biof	uels.								
Syllabus:	Introduction:										
	Introduction and basic concepts: Green Chemistry, biorefineries, biofuels ,	Bio	prod	ucts							
	and platform molecules .										
	Bioproducts from biomass:										
	Production of Biomaterials from Biomass, Chemicals from Biomass & wa	aste,	Biof	uels							
	from Biomass & Waste.										
	Biomass Conversion processes:										
	Biochemical conversion processes, Thermochemical conversion processes										
	gasification, pyrolysis, hydrothermal liquefaction and Integrated hybrid	l co	nver	sion							
	processes.										
	Biorefinery:										
	Design of a biorefinery by incorporating various unit operations, mass and en-										
	sustainability aspects using Aspen plus and other simulation packages.	Exai	nples	s of							
	biorefinery concepts.										
Course	1. Understanding the possibilities of biorefineries in a future scenario v	vitho	out fo	ossil							
Outcomes:	fuels.										
	2. Understanding Green Chemical approaches and alternative processes to	bic	prod	ucts							
	from biomass and waste.										
	3. Ability to identify key pathways for sustainable processing of feedstocks.										
	4. Knowing basic concepts of Biorefineries and Green Chemical r application to present industrial processes.	neth	ods	and							

Mapping of cou	Mapping of course objectives (CO) & program outcomes (PO)												
Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1													
2													
3													
4													

- 1. Kamm, B., Gruber, P.R., and Kamm, M. (2006). Biorefineries Industrial Processes and Products. WILEY-VCH.
- 2. Brown, R.C. (Ed.) Thermochemical processing of biomass into fuels, chemicals and power, Wiley, 2011.
- 3. Clark, J., Deswarte, F. (Ed.) Introduction to chemicals from biomass, John Wiley and Sons, U.K., 2008.
- 4. Basu, Prabir. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2013.
- 5. Bergeron, C., Carrier, D.J., and Ramaswamy, S. (2012). Biorefinery Co-Products. Wiley & Sons, Ltd. ISBN: 978-0-470-97357-8.

Syllabus for courses to be offered by Department of Chemical Engineering for Department of **Biotechnology:**

Course Code CHPC-281			Fluid		rse Title rticle Me	chanics			L 3	Т 0	P 0		
Pre-requisites:	None								-				
Course		urse aims	at provid	ling an o	verview o	f the app	oroaches,	methods	and tech	nique	s of		
objectives:					nd the fun								
Syllabus:	Unit-I								_				
					and real								
				capillari	ty, evapor	ability, v	apour pro	essure, N	ewtonian	and	Non		
		ian fluids					D:00						
			•	statistics	law, Pa	scal's la	w, Diffe	rent type	es of M	anom	eter,		
		gal decan		Dynamia	Close	Faction of	f fluid f	low stra	omlina	track	lina		
					s: Classif								
	 pathlines, flow rate and continuity equation, Bernaulli's theorem and its application, kinetic energy and momentum correction factor in Bernaulli's equation, concept of friction law in fluid flow, various pumps. Laminar Viscous flow and flow measurement devices: Reynolds numbers, Hagen Poiseuille Law, Venturi meter, Orifice meter. Unit-II Size Reduction: Particle size and shape, particle mass, size and shape distributions, measurement and analysis, concept of average diameter, size reduction, crushing, grinding 												
	and law of grindings.												
	Screeni	ing: Equi	pment, c	capacity	and effec	tiveness	of screet	n, effect	of mesh	n size	on		
	capacity of screen.												
	Settling: Flow around a single particle, drag force and drag coefficient, settling velocity of												
particles in a fluid, hindered and free settling of particles, thickening gravity s													
					Classifica								
			e filtratio	on, clarif	ication fil	ters, liqu	id clarif	ication, c	centrifuga	al sett	ling		
	process												
	Unit-II		• •	•, ,•	C 1' ' 1	· 1 G	• •	1 1.	1.0	• •			
					of liquids,				al flow	impel	lers,		
					agitated v				log fluid	inatia			
					orosity, flo ation mini					izatio	Πα		
Course					lents woul					flow	atos		
Outcomes:					pressible		to measu	ne pressu	ne utop,	nowi	ales		
Outcomes.					v problems		annlicati	ion to the	moment	um			
		ince.	ityze the		, problem		applicat		moment	um			
			yould und	lerstand t	he physica	al propert	ies prop	erty meas	urement	and			
					d-fluid mi		ies, prop	erty meas	arennenne	und			
					separation		s for solid	l-solid an	d solid-f	luid			
		tures.			1	1							
lapping of cours	e objectiv	ves (CO)	& progra	am outco	mes (PO))							
Course	0		1 0			am Outc	omes						
Outcomes	1	2	3	4	5	6	7	8	9	10	1		
1													
2			\checkmark					\checkmark					
3			\checkmark										
4											N		
Recommended	books:												

- 1. Smith J C, Mccabe W L and Harriot P H, "Unit Operations of Chemical Engineering", McGraw Hill, 7th edition, (2005).
- Richardson and Coulson "Chemical Engineering Vol II", 5th ed., Butterworth Heinemann 2. (2003).
- Perry's, "Handbook of Chemical Engineering", 7th Ed, McGraw Hill (1997). 3.

Course Co CHPC-28				Н		rse Title Mass Tra	nsfer			L 3	T 1	P 0
Pre-requisit	es:	Knowle	edge of dif	ferential	equations	s.						
Course objectives:	app	olications	and the fu in various gers and e	s heat tra	nsfer equ	ipment in	process i	ndustries	. To learr			
Syllabus:	Ur Co sph Co flui thio He hea Ra law Ev ele Un Ma tran Ga	nit-I nduction heres, diff nvection ids separ ckness, cu at Trans at flux, co diation: diation: diation: h, Kircho aporatio vation. it-II nss Tran nsfer coe	n: Fourier ferent insu : Convect ated by p oncepts of fer with p ondensatio Blackbod ff's law. n: Single sfer Coef fficients, I ption: Ch	's law, st lating ma ion, indi blane wa heat exc phase ch a n phenor y radiation and mu ficient : I Local ove	ready stat aterials for vidual an ll and by hanger. ange: Bo nena, filn on, Plancl ultiple eff cocal and rall Mass	te heat co or process d overall y cylindri iling phen n condens. k's law, V fect evapo fect evapo l overall r	nduction equipment heat trans cal wall omena, c ation on a Vein's dis prators, c mass trans coefficies	through nt sfer coeff (pipes), correlation a vertical splacement capacity sfer coeff nts.	a compo ficient, he critical/ n for nucl surface. nt law, th and ecor ficient, lo	eat transfe optimum leate boili ne Stefan nomy, bo pcal two p	er betw insulat ng, crit Boltzm iling po bhase n	een tion tical ann oint nass
	Dis vol refi Lic mu Un Ad	stillation atility, di lux ratios juid – L ltistage c it-III sorption therm, B	uilibrium i : Raoult ifferential : Lewis So iquid Ext ross curre : Introduc ET isother tion: Forn	t's Law & flash c orel and I traction: nt, co-cu ction and m and G	and Dal listillation MaCabe - Ternary rrent and l the nat ibbs isoth	lton's law n, steam d -Thiele mu phase dia counter cr ure of ad nerm, adso	r, partial stillation ethods, Po agrams & urrent ext sorbent, rption eq	vaporisa , total ref onchon S 2 choice raction o adsorptio uipments	ation con lux, min avarit me of solven peration on equili	ndensation imum and ethod nt, single	n, relat l optim stage a	um and
Course Outcomes:	1. 2. 3. 4.	Develo govern Ability The stu cascade	to unders p correlating radiati to unders idents are es and con	tions usi on mode tand thep able to co cept of Io	ng eleme rinciples ompreher deal stage	of mass tr of the con- e and stage	nensional cansport. cepts of c efficience	analysis	s and co	mprehend er current	proces	ses,
Iapping of co	ours	e objecti	ves (CO)	& progra	am outco	mes (PO)						
Course						Progr	am Outo	comes				
Outcomes		1	2	3	4	5	6	7	8	9	10	1
1												
2			\checkmark									
3												٦
4												
Recommend	ed b	ooks:										

- 2. 3. 4.
- Richardson and Coulson "*Chemical Engineering Vol II*", *5th ed.*, Butterworth Heinemann (2003). Perry's, "*Handbook of Chemical Engineering*", 7th Ed, McGraw Hill (1997). Geankopolis C J, "*Transport Processes and Separation Process Principles*", Prentice Hall of India, 4th Edition, Eastern Economy Edition (2004) Treybal R E, "Mass Transfer Operations" 3rd ed., McGraw Hill (1980)
- 5.

commended books: Smith J C, Mccabe W L and Harriot P H, *"Unit Operations of Chemical Engineering"*, McGraw Hill, 7th edition, 1. (2005).

Course Code CHPC-481		T	natmina		se Title and Proces	a Contro	1		L 3	Т 0	P 0			
Pre-requisites:	Basic kn				ass and en				3	U	0			
Course		U			esponse of	0,		systems	in term	s of b	lock			
objectives:		and the st	•		-		r	~ j ~~~~~						
Syllabus:		principle	•											
·	Static a	nd dynar	nic char	acteristic	s of inst	ruments,	Tempe	rature N	/leasurei	ment:				
		•			neters, the		-				ters.			
	Pressure	Measure	ement: U	Use of 1	nanometer	rs, Bourd	on gau	ge, belle	ows typ	be ga	uge,			
					sure trans									
	meters. Pressure probes, positive displacement type meters. Liquid level Measurement													
		nd differei	ifferential method, measurement in open and pressure vessels, measurement of											
	liquid. Process control													
					:	tion Trees		of Donio		:4:-1 -	1			
	-				imple fund		istorms	of Deriv	ative, in	itial v	alue			
					ansform o	-								
	_		-		nd higher	-		. .	· 1 T	1 0				
	•				er function	-		-		•				
	-				nt flow o				-					
	Circuit, Response of First order system in series: Non interacting System and Interacting Systems. Transfer function of second order system, under damped System, Impulse													
	Systems. Transfer function of second order system, under damped System, Impulse function, Sinusoidal function, Transportation lag													
						ag								
	Controllers and final control element													
	Control Valve, Proportional controller, Integral & Derivative controller, Comparison of P, PI and PID controllers.													
	Transient response of control system Components of control system, block diagram, Negative and Positive feedback, Servo													
	-		-		-	-								
					evelopme									
	set point change, Proportional control for load change, Proportional Integral control for													
	load change, Proportional Integral Control for set point change													
	Stability of the system													
	Concept of stability, Stability Criteria, Routh test for stability. Introduction to frequency													
	response: Bode diagram for first order, Bode diagram for proportional, Integral and derivative control, Second order system. Control System Design by frequency response:													
											onse:			
	Bode sta	bility crite	eria, Gain	and pha	se Margin	Ziegler N	Vichols (Controlle	r setting	s.				
Course				-	cess in terr		0							
Outcomes:				o unders	tand the ef	fect of va	rious foi	cing fun	ction on	first a	and			
		ner order s				•		c ·						
					tand the tr						_			
					tability of		stems a	nd be ab	le to des	ign th	e			
Tonning of cor-					allied ind	usuies.								
Apping of cours	e objectiv	es(U)	x progra											
Course	1	•	2	4	0	am Outco		0	•		10			
Outcomes		2	3	4	5	6	 ✓	8 ✓	9	+	10			
1	~													
2		✓ ✓	 	\checkmark			\checkmark	√						
3		×						 ✓ 						
4	\checkmark			\checkmark				\checkmark						

1. Coughanower D. R., "Process System Analysis and Control", 2nd Edition, McGraw Hill. (1991).

2. Seborg, E., Mellichamp, "Process Dynamics & Control", 2nd Edition, John Wiley, (2004).

3. Stephanopoulos, "Chemical Process Control-An Introduction To Theory & Practice",1st Edition, Prentice Hall Inc.

4. Eckman D. P., "Industrial Instrumentation", Wiley Eastern Ltd., (1975).

5. Kerk F. W., Rimboi W., Tarapore R., "Instrumentation", Wiley and Sons, (1983).

Code	Course Title	L	Т	Р	Credit	Semester		
CHMI-201	Introduction to Chemical	3	0	0	3	III		
	Engineering and Process							
	Calculations							
CHMI-202	Fluid and Particle	3	0	0	3	IV		
	Mechanics							
CHMI-301	Chemical Technology	3	0	0	3	V		
CHMI-302	Heat and Mass Transfer	3	0	0	3	VI		
CHMI-401	Chemical Reaction	3	0	0	3	VII		
	Engineering and							
	Thermodynamics							
CHMI-402	Process Plant and	3	0	0	3	VIII		
	Equipment Design							
	Total Credits	18						

Scheme for Minor Degree in B.Tech Chemical Engineering Programme

Course Code Course Title L Т Р **CHMI-201 Introduction to Chemical Engineering and Process Calculations** 3 0 0 **Pre-requisites:** Basic Knowledge of mathematics This course will prepare students to make analysis of chemical processes through Course objectives: calculations which need to be performed in the chemical processing operations. The students are introduced to the application of laws and also to formulate and solve material and energy balances in processes with and without chemical reactions. Syllabus: Introduction to Chemical Engineering Introduction to Chemical Engineering, profession, plant operation, Basic concepts of units and equations of state, Overview of unit operations and processes, basic concepts of P&I diagram. Introduction to process instrumentation and control and its importance, Introduction to safety in chemical process industries, introduction to Environmental Engineering, Challenges of Chemical Engineer. Introduction to Chemical process calculations Units and dimensions, mole concept, conventions in methods of analysis and measurement, basis, temperature, pressure, the chemical equations and stoichiometry, limiting and excess reactant, conversion and yield. **Material Balance** Material balance, program of analysis of material balance problems, solving material balance problems that do not involve chemical reactions, solving material balances problems involving chemical reactions, multiple subsystems, recycle, bypass, and purge calculations. **Energy Balance** Concepts and units, calculation of enthalpy changes, application of the general energy balance without reactions occurring energy balances that account for chemical reaction, reversible processes and the mechanical energy balances, heats of solution and mixing, psychometric charts and their use. The student will demonstrate the ability to understand the basic concepts of Chemical Course 1. **Outcomes:** Engineering. Understand the material and energy balances of chemical processes. 2. 3. Able to perform material and energy balances on chemical processes/equipment without and with reactions. 4. Able to draw the flow diagram and solve the problems involving recycle, purge and bypass in a process or unit. Mapping of course objectives (CO) & program outcomes (PO) **Program Outcomes** Course Outcomes 4 9 1 2 3 5 6 7 8 10 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 1 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 2 $\sqrt{}$ $\sqrt{}$ 3 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$

Syllabi for Minor Degree in B.Tech Chemical Engineering Programme

Recommended books:

4

2

 $\sqrt{}$

- 1. Pushpavanam, S., Introduction to Chemical Engineering, PHI Learning Pvt. Ltd.
- 2. S. K. Ghoshal, S. K. Sanyal And S. Datta, ., Introduction to Chemical Engineering, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

 $\sqrt{}$

 $\sqrt{}$

11

- 3. Himmelblau D. M., "Basic Principles and Calculations in Chemical Engineering", Prentice Hall, (1998)
- 4. Haugen O. A., Watson K. M. Ragatz R. A., "Chemical Process Principles (Part-I): Material and Energy Balances", Asia Publishing House, (1995).
- 5. Bhatt B. I., Vora S. M., "Industrial Stoichiometry", Tata McGraw Hill Publishing, New Delhi, (1987).

Course code CHMI-202	Course Title Fluid and Particle Mechanics	L 3	Т 0	P							
Pre-requisites:		3	U	0							
Course	none To understand the fundamentals of fluid flow phenomena. To learn about th	e transno	rtation o	f fluid							
objectives:	and flow measuring devices, knowledge in particle technology, sedimentati										
objectives.	bed, filtration	011, 110 w	unougn	раске							
Syllabus:	Introduction										
	Ideal and real fluids, Extensive and Intensive Properties, Specific Weight, Mass density and Specific										
	gravity, Viscosity, Surface Tension and Capillarity, Newtonian & Non Newtonian fluids. Pressure										
	Hydrostatics law, Pascal's Law, Different types of manometer, Decanter										
	Fluid kinematics and Dynamics	_									
	Classification of fluid flows, streamline, streak line, and Path lines, Flow rat										
	Bernoulli's Theorem, Kinetic energy correction factor and momentum correct	tion facto	r in Ber	noull1's							
	equation.										
	Laminar viscous flow and Flow measurement devices	D 11	. T	0.10							
	Flow regimes and Reynolds numbers, Laminar flow in circular pipes (Hagen	Poiseuili	e Law),	Orifice							
	meter, Venturimeter, Rotameter, Pitot tube.										
	Pump Pump Classification & Applications, Pump losses and Efficiencies, Multi	stage pur	nna Wa	orte or d							
	power Input, Cavitation and Maximum Suction lift	stage pul	nps, we	JIK allo							
	Size Reduction										
	Particle size and shape, particle mass, size and shape distributions, measurement and analysis, concept										
	of average diameter, size reduction, crushing, grinding and laws of grinding.										
	Screening and Filtration										
	Screening and Finitation Screening equipment, capacity and effectiveness of screen, effect of mesh size on capacity of screen										
	Classification of filters, various types of cake filters, principle of cake filtration, clarification filters,										
	liquid clarification, centrifugal settling process.										
	Fluidization										
	Packed beds, bed porosity, flow though a bed of particles, fluidization & fluid	dized bed	, condit	ions foi							
	fluidization, minimum velocity, types of fluidization.										
Course	1. Students would be able to measure pressure drop, flow rates etc. for incom	pressible	and								
Outcomes:	compressible fluids.										
	2. Ability to analyze the fluid flow problems with the application to the mon		lance.								
	3. Applying the principles of fluid mechanics to chemical engineering proble										
	4. Ability to visualize and understand chemical engineering unit operations r	elated to f	fluid								
	and particle mechanics.										

Course		Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1												
2												
3												
4												

- 1. Smith J. C., McCabe W. L., Harriot P. H., "Unit Operations of Chemical Engineering", McGraw Hill (2001).
- 2. Frank M. White, "Fluid mechanics", 7th Edition, McGraw Hill (2010).
- 3. Perry's, "Handbook of Chemical Engineering", 7th Edition, McGraw Hill, (1997).
- 4. Brown G. G. "Unit Operations", 1st Edition, CBS Publisher, (2004).
- 5. Richardson and Coulson "Chemical Engineering Vol II", 5th Edition, Butterworth–Heinemann, (2002).

Course Code	Course Title	L	Т	Р					
CHMI-301	Chemical Technology	3	0	0					
Pre-requisites:	Basic course on chemistry and mechanical operations		Ū	Ŭ					
Course	Students will be able to understand sources and processes of manufa	cture o	f vari	ous					
objectives:	chemicals such as Fertilizers, Soaps and Detergents, Cement, Glass, S								
0	soda, chlorine, and hydrochloric acid.		·						
Syllabus:	Natural Products Processing								
-	Oils and Fats: Major oil seeds production in India; solvent extraction, Hydrogenation								
	of oils. Cane sugar: Sugar production and varieties, manufacturing equipment and								
	technology, cane sugar refining.								
	Soaps and Detergents								
	Raw materials and Reaction Chemistry, Continuous process for man								
	acids, soaps and glycerine, Manufacture of detergents like alkyl ben	zene su	lphon	ate,					
	Sodium alkane sulphonate.								
	Polymers, Petroleum and petrochemicals	_							
	Nomenclature of polymers and their classification, Modes of								
	Manufacturing of plastics, synthetic fibers, synthetic	and		ıral					
	rubbers.Characteristics, Fuels/chemicals from petroleum and petroche	emicals,	Prim	ary					
	and Secondary processing, Treatment techniques and applications.			: .					
	Alkalies, acids and salts: Manufacturing of caustic soda and chlori			oric					
	acid,Sulphuric acid and soda ash, corrosion problems and materials of a Fertilizers	construc	non						
	Status of industry, grading and classification of fertilizers, raw mat	oriale	wdro	aan					
	production, and synthesis of ammonia based fertilizers, manufacture of phosphatic fertilizers and phosphoric acid, potash fertilizers, N-P-K values.								
	Cement and glass								
	Raw materials, Types of cement, Properties of cement, Manufacture of cement.								
	Types of glass, Raw materials and manufacture of glass.		•						
Course	1. Able to analyze the flow of raw material to product formation q	uontitat	volv	and					
		uannian	VELV	anu					
Outcomes:	· 1 1	uamman	very	anu					
	qualitatively in each step of processes.Able to understand the unit operation and unit processes involved.	uantitat	very	anu					
	qualitatively in each step of processes.	uantitat	very	anu					

Course	Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											

- 1. Austin G.T., Shreve's Chemical Process Industries International Student Edition, 5th Edition, McGraw Hill Inc., 1998.
- 2. Sittig M. and GopalaRao M., Dryden's Outlines of Chemical Technology for the 21st Century, 3rd Edition, WEP East West Press, 2010.
- 3. W.V.Mark, S.C. Bhatia "Chemical Process Industries volume I and II", 2nd Edition 2007.
- 4. Shukla S. D., Pandey G. N., "A text book of Chemical Technology, Vol. I", Vikas Publishing House Pvt. Ltd., New Delhi.
- 5. Jacob A. M., Michiel M and Annelies V D , Chemical Process Technology, 1stEdn, 2001.

Course Co		L	Т	Р					
CHMI-30		3	0	0					
Pre-requisite	es: Knowledge of fluid mechanics								
Course	To understand the fundamentals of heat transfer mechanisms in fluids and	solids	and	thei					
objectives:	applications in various heat transfer equipment in process industries.								
Syllabus:	Conduction								
	Fourier's law, thermal conductivity, its dependence on temperature, steady stat								
	through a composite solid, cylinders, spheres and variable area of solids, d	ifferent	insul	ating					
	materials and their applications for process equipment and pipelines.								
	Convection								
	Convection heat transfer and the concept of heat transfer coefficient, individua								
	transfer coefficient, heat transfer between fluids separated by plane wall, heat								
	fluids separated by cylindrical wall (pipes), critical/ optimum insulation thickn	iess, he	eat tra	nste					
	through extended surfaces.								
	Radiation		1						
	Basic principle of radiation from a surface, blackbody radiation, Planck's law, Wien's displacement law, the Stefan Boltzmann law, Kirchhoff's law, gray body, radiation exchange between black								
		ge beiv	veen i	Slaci					
	bodies & gray bodies. Molecular Diffusion								
		or cooff	Toiont						
	Molar flux, Steady state diffusion, Mass transfer coefficient, Interface mass transfer coefficient Distillation : Raoult's Law and Dalton's law, partial vaporisation condensation, relativevolatility,								
	differential & flash distillation, steam distillation, total reflux, minimum and optimum reflux ratios,								
	Lewis Sorel and MaCabe – Thiele methods	num ic	IIUA I	anos					
	Lewis borer and macube Thiefe methods								
Course	1. Ability to understand and solve conduction, convection, radiation	and ma	iss tra	nsfe					
Outcomes:	problems.								
	2. Students should be able to perform heat flux calculations through cor	istant a	nd var	iabl					
	area elements and estimate optimum insulation thickness.								
	3. Ability to understand the principles of mass transport.								
	4. Applying the concepts to heat and mass transport to industrial flows.								
	urse objectives (CO) & program outcomes (PO)								

Course					Program Outcomes									
Outcomes	1	2	3	4	5	6	7	8	9	10	11			
1											\checkmark			
2														
3														
4														

- 1. J. P. Holman., "Heat Transfer", 9th Edition, Tata McGraw-Hill, New Delhi, (2004).
- 2. B. K. Dutta., "Heat Transfer: Principles and Applications", Prentice Hall of India Limited, (2004).
- 3. Treybal R. E., "Mass Transfer Operations" 3rd Edition, McGraw Hill, (1980).
- 4. Geankopolis C. J., "Transport Processes and Separation Process Principles", Prentice Hall of India, 4th Edition, Eastern Economy Edition, (2004).
- 5. McCabe W. L., Smith J. C. "Unit Operations of Chemical Engineering", McGraw Hill, (2001).

Course Code	Course Title	L	Т	Р						
CHMI-401	Chemical Reaction Engineering and Thermodynamics	3	0	0						
Pre-requisites:	None									
Course Objectives:	The course aims at understanding the basic concepts of: chemical kinetics	s for	diffe	rent						
	types of reactions, designing the basic reactors. To introduce the principles									
	Engineering Thermodynamics and illustrate their application to design	of	chem	ical						
	process plants.									
	Introduction									
Syllabus:	Kinetics of homogeneous chemical and biochemical reactions, single and multiple									
	reactions, order & molecularity, rate constant, elementary and no	on-el	lemen	tary						
	reactions, temperature dependent term of rate equation.									
	Batch Reactor									
	Constant volume batch reactor, integral method of analysis of data, series									
	reactions, reversible reactions, variable volume batch reactor, temperature	and	react	ions						
	rate.									
	Introduction to Homogeneous Reactor Design									
	Ideal batch reactor, mixed flow reactor, plug flow reactor, holding and space time,									
	design for single reactions, size comparison (analytical and graphical method, plug									
	flow reactors in series & parallel, mixed reactor in series, recycle reactors.									
	Heterogeneous Processes : Introduction of Heterogeneous Processes									
	Thermodynamics: Introduction to I, II, III law of Thermodynamics									
	Equilibrium and Stability									
	Criteria of equilibrium, Chemical Potential, Application of equilibr	um	crite	eria,						
	Clausius clapeyon equation, Introduction to Phase Equilibria.									
	Chemical Reaction Equilibria Basetion ordinate for single & multiple resations, condition of equil	ihrii	um f							
	Reaction ordinate for single & multiple reactions, condition of equil chemical reactions, Temperature dependence of the equilibrium constant,									
	equilibrium rate constant, Homogeneous gas phase reactions, Heterogene									
	equilibrium.	ous	chen	iicai						
Course Outcomes:	1. To understand the mechanism of chemical kinetics for different types	of	onativ	ma						
Course Outcomes:	 To design batch and flow reactors for single homogeneous reactions 	011	cacil	115						
	 To understand solid-fluid non-catalytic reaction kinetics and design o 	f reg	actore							
	 Ability to apply the laws of thermodynamics for solving problems rel. 									
	processes and equilibrium systems.	aicu	10 11	, ,,						
	processes and equilibrium systems.									

Course		Program Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
1												
2												
3												
4												

1. Levenspiel O., "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons, Singapore, (1999).

2. Fogler H. S., "Elements of Chemical Reaction Engineering", 3rd Edition, Prentice Hall Inc., (1999)

3. J.M. Prausnitz, R.N. Lichtenthaler and E.G. Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice Hall, 1998.

4. J.W. Tester and M. Modell, Thermodynamics and its Applications, 3rd ed., Prentice Hall, 1999.

5. S.I. Sandler, Chemical, Biochemical and Engineering Thermodynamics, 4th Edition, Wiley India, 2006.

Course Code	Course Title	L	Т	Р							
CHMI-402	Process Plant and Equipment Design	3	0	0							
Pre-requisites:	Material science and strength of material, basic knowledge of engineering dra	wing.									
Course	This course is deals with the principals involved in the design and construct	ion of	equipn	ient. It							
objectives:	also provides knowledge of mechanical designs of various equipments.										
Syllabus:	Introduction to plant design										
	Basic considerations in chemical engineering plant design, optimization and feasibility of plant										
	design. Selection of process-factors affecting process selection. Types of project design,										
	Importance of Laboratory development pilot plant, safety factors, types of flow diagrams										
	Heat and Mass Transfer Equipments Design										
	Classification and description of different heat exchangers. Types of mass			pment,							
	packed and tray type towers. Process Design: Process design of tray and pack	ed tow	ers.								
	Introduction to principles of design										
	Nature of process equipment, general design procedure, basic considerations in design, standards,										
	codes, and their significance, equipment classification and their selection, des										
	temperature, design stress. Materials of construction and selection for proces	s equip	oment,	linings							
	and coatings for equipment.										
	Equipment design										
	Storage tanks: Various types of storage tanks and applications. Mechanical design: Mechanical										
	design of tall vessels for distillation and absorption columns. Reaction vessels: Introduction,										
	classification, heating systems, design of vessels, study and design of various										
	plain, half coil, channel, limpet oil. Study and design of internal coil rea	iction	vessels	, Heat							
C	transfer coefficients in coils.			4. 1:1-2							
Course	1. The students are able to handle the design of various typical chemical ba	sea eq	uipmer	its like							
Outcomes:	heat exchangers, distillation columns etc.										
	2. The students would also able to make plant layout of the newly developed unitary property of design problems.	i plant	s and p	repare							
	written reports of design problems. 3. Introduce to standards for the mechanical design of equipment used in the	nroacc	aindus	++++							
	4. Students will able to design, fabricate and identify design problems in i	ndustri	ar equ	ipment							
	based on the knowledge obtained from this course.										

Mapping of cou	rse objecti	ves (CO)	& progra	am outco	omes (PO))							
Course		Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11		
1													
2											\checkmark		
3			\checkmark				\checkmark						
4													

- 1. Bhattacharya B. C., "Chemical Equipment Design", CBS Publisher, (1985).
- 2. Ulrich G. D., "A Guide to Chemical Engineering Process Design and Economics", John Wiley, (1984).
- 3. D. Q. Kern, "Process Heat Transfer", McGraw Hill, (2001).
- 4. E. E. Ludwig, "Applied Process Design for Chemical and Petrochemical Plants", Vol. 1, 2 and 3, 3rd Edition, Gulf Publishing Company, (1995).
- 5. M. Van Winkle, "Distillation", 1st Edition, McGraw Hill Company, New York, (1967).